The experimental studies were performed to examine the failure mechanism and the capacity of BFRP bolt-anchorage system under laboratory and field conditions in supporting clay slopes in Sichuan Basin, China. The results indicate that BFRP anchor bolts, designed based on the principle of equal strength replacement between bolt tensile strength and the bonding strength of the first interface, can meet the safety standards required for slope engineering. During the stable phase of the slope, the mechanical behavior and deformation characteristics of BFRP anchor bolts are comparable to those of steel anchor bolts, with the axial force of BFRP bolts being 1/3 to 1/4 lower than the designed value. When the slope enters the accelerated creep stage, the axial force of steel anchor bolts exceeds the designed value by 40 %, while the axial force of BFRP bolts remains at only 2/3 of that of steel bolts. The failure mechanisms of the BFRP bolt-anchorage system primarily involve shear failure at the bolt-mortar interface and pullout failure of the bolt body, which are attributed to the cumulative damage of the polymer material. Based on the experimental findings, it is recommended that the minimum tensile safety factor for BFRP bars used in temporary slope support should be set at 1.26. This study enhances the understanding of BFRP anchorage systems in clay soil environments and provides valuable insights for the design and construction of infrastructure projects in similar geological conditions.