共检索到 2

Wildfires in Arctic regions impact landforms via permafrost degradation and subsequent deformation that can last for many years. However, it remains uncertain on if and how much deformations occur, and what controls their magnitude, particularly during the first couple of years. Here, we examine the transient post-fire deformation responses near the Batagaika megaslump, which is the world's largest retrogressive thaw slump at Batagay, Sakha Republic. There were wildfires in the summers of 2018 and 2019 on the same slope, which could trigger the formation of another megaslump; many fires occurred nearby in 2019. We use interferometric synthetic aperture radar (InSAR) to measure surface displacements, including both post-fire and span-fire images. We also perform onsite measurements of temperature and thaw depth around the two scars near Batagaika megaslump in 2019, 2020, and 2021 and around the 2014 scar in 2019. At the three fire scars formed in 2018 and 2019, we demonstrate year-to-year and location-specific changes in the amplitude of subsidence, heave, and duration. The 2018 scar shows cumulative subsidences of up to 10 cm by March 2021, more clearly than the nearby 2019 scar. On the other hand, another 2019 scar adjacent to the 2014 scar shows up to 13 cm net subsidence during the first span-fire year, although the subsiding area is limited. These diverse transient post-fire responses demonstrate that under the yedoma area the spatial heterogeneities of the active layer depth and the timing of fires will control subsequent thermokarst processes.

期刊论文 2023-02-01 DOI: 10.1029/2022JF006817 ISSN: 2169-9003

The most massive and fast-eroding thaw slump of the Northern Hemisphere located in the Yana Uplands of Northern Yakutia was investigated to assess in detail the cryogenic inventory and carbon pools of two distinctive Ice Complex stratigraphic units and the uppermost cover deposits. Differentiating into modern and Holocene near-surface layers (active layer and shielding layer), highest total carbon contents were found in the active layer (18.72 kg m(-2)), while the shielding layer yielded a much lower carbon content of 1.81 kg m(-2). The late Pleistocene upper Ice Complex contained 10.34 kg m(-2)total carbon, and the mid-Pleistocene lower Ice Complex 17.66 kg m(-2). The proportion of organic carbon from total carbon content is well above 70% in all studied units with 94% in the active layer, 73% in the shielding layer, 83% in the upper Ice Complex and 79% in the lower Ice Complex. Inorganic carbon is low in the overall structure of the deposits.

期刊论文 2020-09-01 DOI: 10.3390/land9090305
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页