Plant lead (Pb) tolerance and accumulation are key characteristics affecting phytoremediation efficiency. Bermudagrass is an excellent candidate for the remediation of Pb-polluted soil, and it needs to be mowed regularly. Here, we explored the effect of different mowing frequencies on the remediation of Pb-contaminated soil using bermudagrass. Mowing was found to decrease the biomass and photosynthetic efficiency of bermudagrass under Pb stress, thereby inhibiting its growth. Although mowing exacerbated membrane peroxidation, successive mowing treatments alleviated peroxidation damage by regulating enzymatic and nonenzymatic systems. A comprehensive evaluation of Pb tolerance revealed that all the mowing treatments reduced the Pb tolerance of bermudagrass, and a once-per-month mowing frequency had a less negative effect on Pb tolerance than did more frequent mowing. In terms of Pb enrichment, mowing significantly increased the Pb concentration, total Pb accumulation, translocation factor (TF), and bioenrichment factor (BCF) of bermudagrass. The total Pb accumulation was greatest under the once-a-month treatment, while the TF and BCF values were greatest under the three-times-a-month mowing treatment. Additionally, the decrease in soil pH and DOC were significantly correlated with the soil available Pb content and plant Pb accumulation parameters. The results showed that changes in the rhizosphere are crucial factors regulating Pb uptake in bermudagrass during mowing. Overall, once-a-month mowing minimally affects Pb tolerance and maximizes Pb accumulation, making it the optimal mowing frequency for soil Pb remediation by bermudagrass. This study provides a novel approach for the remediation of Pb-contaminated soil with bermudagrass based on mowing.
Bermudagrass (Cynodon dactylon (L.) Pers.) is one of the primary perennial forages in the southeastern USA. Newer hybrid cultivars have superior production and nutritive value compared to common ecotypes. However, there are many challenges facing bermudagrass production in the region. First, the bermudagrass stem maggot (BSM; Atherigona reversura Villeneuve) has severely damaged bermudagrass throughout the region. Strategically timed pyrethroid applications significantly reduce adult BSM populations, but efforts are needed to develop integrated pest management plans. Second, an increasing number of producers are noting challenges with green-up following winter dormancy. This may be attributed to disease, unbalanced soil fertility, and weed pressure. Perhaps one of the most limiting factors for continued production is the deficit of sprigs and trained personnel to sprig hybrid bermudagrasses. This research is critically important as the need for cold-tolerant bermudagrass is increasing as tall fescue (Lolium arundinaceum (Schreb.) S. J. Darbyshire) is declining due to changes in temperature and precipitation throughout the northern parts of the region. Plant breeders are investigating hybrid bermudagrass at latitudes >35 degrees with respect to freeze or cold tolerance. Despite the many challenges facing hybrid bermudagrass in the southeastern USA, researchers are working to ensure its persistence, productivity, and availability for the future.
Methiozolin is applied five or more times per year to control annual bluegrass (Poa annua L.) in cool, temperate areas, but high market demand in the southern United States and recent registration in Australia has expanded the product's use in variable climates. To better design weed control programs for variable turf types, more information is needed to characterize methiozolin dissipation in different turf systems. Methiozolin was applied biweekly three times to a Kentucky bluegrass (Poa pratensis L.) lawn and adjacent bare soil in New Jersey and on 12 hybrid bermudagrass [Cynodon dactylon (L.) Pers. x Cynodon transvaalensis Burtt Davy] putting greens in Virginia. Soil samples were collected immediately following each application and biweekly for 12 additional weeks. Methiozolin was extracted from each soil sample and analyzed using liquid chromatography with tandem mass spectrometry. Methiozolin was detected only within the top 2 cm of the soil (including verdure), but not below 2 cm, demonstrating its limited vertical mobility. Dissipation was significantly faster in turf-covered soil compared with bare soil. The time required for 50% methiozolin dissipation was 13 and 3.5 d in bare soil and turf-covered soil, respectively. In Virginia, methiozolin dissipation in the 1-m span of three sequential applications differed between years. Methiozolin concentration immediately following the third biweekly application to C. dactylon xtransvaalensis greens was approximately 105% and 180% of the concentration immediately following the initial application, in 2021 and 2022, respectively. This difference in methiozolin accumulation following three applications was attributed to differential C. dactylon xtransvaalensis green up during methiozolin treatments each year. Despite differences in posttreatment methiozolin concentration between years, the temporal dissipation rate later into the summer was consistent. Following the final application on C. dactylon xtransvaalensis greens, methiozolin dissipated 50% and 90% in 14 and 46 d, respectively. These data suggest that methiozolin dissipates more rapidly in turfgrass systems than in bare soil.