共检索到 4

【目的】干涉合成孔径雷达测量(InSAR)技术近年来被广泛用于反演活动层厚度(ALT),然而现有研究较少考虑冻融对地表形变和土壤孔隙水热变化的影响,因此,本文构建了考虑土壤水热变化的ALT反演模型。【方法】使用InSAR技术和CNNBiLSTM-AM模型得到地表参数,顾及冻融驱动下活动层的变形和土壤孔隙及水分的变化构建了活动层厚度反演模型。首先,通过SBAS-InSAR技术提取研究区垂直向地表形变。然后,构建CNN-BiLSTM-AM模型,使用卷积神经网络(Convolutional Neural Networks, CNN)对多源遥感数据特征提取,采用双向长短期记忆网络(Bi-directional Long Short-term Memory,BiLSTM)对提取特征进行预测,添加多头自注意力层(Attention Mechanism, AM)提高模型对关键信息的提取,得到多特征约束下的土壤含水量预测值。最后,以垂直向地表形变作为表征活动层的主要参数,构建基于土壤孔隙比和土壤含水量的活动层厚度反演模型,得到兰新高铁冻土区活动层厚度的时空分布。【结果】模型估计值与俄博岭实测数据验证的...

期刊论文 2025-01-08

【目的】干涉合成孔径雷达测量(InSAR)技术近年来被广泛用于反演活动层厚度(ALT),然而现有研究较少考虑冻融对地表形变和土壤孔隙水热变化的影响,因此,本文构建了考虑土壤水热变化的ALT反演模型。【方法】使用InSAR技术和CNNBiLSTM-AM模型得到地表参数,顾及冻融驱动下活动层的变形和土壤孔隙及水分的变化构建了活动层厚度反演模型。首先,通过SBAS-InSAR技术提取研究区垂直向地表形变。然后,构建CNN-BiLSTM-AM模型,使用卷积神经网络(Convolutional Neural Networks, CNN)对多源遥感数据特征提取,采用双向长短期记忆网络(Bi-directional Long Short-term Memory,BiLSTM)对提取特征进行预测,添加多头自注意力层(Attention Mechanism, AM)提高模型对关键信息的提取,得到多特征约束下的土壤含水量预测值。最后,以垂直向地表形变作为表征活动层的主要参数,构建基于土壤孔隙比和土壤含水量的活动层厚度反演模型,得到兰新高铁冻土区活动层厚度的时空分布。【结果】模型估计值与俄博岭实测数据验证的...

期刊论文 2025-01-08

【目的】干涉合成孔径雷达测量(InSAR)技术近年来被广泛用于反演活动层厚度(ALT),然而现有研究较少考虑冻融对地表形变和土壤孔隙水热变化的影响,因此,本文构建了考虑土壤水热变化的ALT反演模型。【方法】使用InSAR技术和CNNBiLSTM-AM模型得到地表参数,顾及冻融驱动下活动层的变形和土壤孔隙及水分的变化构建了活动层厚度反演模型。首先,通过SBAS-InSAR技术提取研究区垂直向地表形变。然后,构建CNN-BiLSTM-AM模型,使用卷积神经网络(Convolutional Neural Networks, CNN)对多源遥感数据特征提取,采用双向长短期记忆网络(Bi-directional Long Short-term Memory,BiLSTM)对提取特征进行预测,添加多头自注意力层(Attention Mechanism, AM)提高模型对关键信息的提取,得到多特征约束下的土壤含水量预测值。最后,以垂直向地表形变作为表征活动层的主要参数,构建基于土壤孔隙比和土壤含水量的活动层厚度反演模型,得到兰新高铁冻土区活动层厚度的时空分布。【结果】模型估计值与俄博岭实测数据验证的...

期刊论文 2025-01-08

In order to study the impact of surface roughness on the cyclic shear characteristics of the Soil-Rock Mixture and concrete interface, a series of cyclic shear tests were conducted using a large indoor direct shear apparatus. The effects of three concrete surface roughness coefficients JRC (0.4, 9.5, 16.7), five rock content levels (0%, 25%, 50%, 75%, 100%), and three cyclic shear displacement amplitudes (1, 3, 6 mm) on interface cyclic shear stress and Soil-Rock Mixture shear deformation were analyzed. A Bidirectional Long Short-Term Memory (BoBiLSTM) model was proposed, utilizing Bayesian optimization and k-fold cross-validation for hyperparameter tuning to streamline the model parameter selection process and enhance the prediction accuracy of the stress-strain relationship under cyclic loading. The experimental results show that, under five rock content levels, as the concrete surface roughness coefficient and cyclic shear displacement amplitude increase, the interface average peak shear stress increases accordingly. The interface average peak shear stress of the sample with 75% rock content is the highest; in terms of vertical displacement, the sample with 50% rock content has the maximum displacement, while the sample with 25% rock content has the minimum. The two types of samples show different soil deformation patterns in the two shear directions during the cyclic shearing process; as the shear displacement amplitude increases from 1 mm to 3 mm and 6 mm, the greater the concrete surface roughness, the smaller the change in shear stiffness and damping ratio. Compared to traditional Long Short-Term Memory (LSTM) models, the BoBiLSTM model demonstrated improvements in the average metrics of R2, RMSE, and MAPE by 0.32%, 57.25%, and 72.32%, respectively.

期刊论文 2024-05-03 DOI: 10.1016/j.conbuildmat.2024.136031 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页