Insights into the impacts of freeze-thaw processes on soil microorganisms and their related functions in permafrost regions are crucial for assessing ecological consequences imposed by the shifts in freeze-thaw patterns. Through in-situ investigations on seasonal freeze-thaw processes in the active layer of permafrost in the Qinghai-Tibet Plateau, we found that microbial richness was higher and positively correlated with soil multifunctionality during the freeze-thaw stage (freezing and thawing periods) compared to the non-freeze-thaw stage (completely frozen and thawed periods). This relationship resulted from the higher microbial stability, which was highly consistent with the lower complexity, more keystone taxa, and greater robustness of networks. Although freeze-thaw strength exacerbated the greenhouse effect on climate, it was alleviated by the enhancement of diversity-soil multifunctionality relationship. These findings have substantial implications for exploring the responses of microbial-mediated soil multifunctionality and greenhouse effect in alpine permafrost to more drastic variations of freeze-thaw processes under future warming.
2024-10-10In the context of global warming, increasingly widespread and frequent freezing and thawing cycles (FTCs) will have profound effects on the biogeochemical cycling of soil carbon and nitrogen. FTCs can increase soil greenhouse gas (GHG) emissions by reducing the stability of soil aggregates, promoting the release of dissolved organic carbon, decreasing the number of microorganisms, inducing cell rupture, and releasing carbon and nitrogen nutrients for use by surviving microorganisms. However, the similarity and disparity of the mechanisms potentially contributing to changes in GHGs have not been systematically evaluated. The present study consolidates the most recent findings on the dynamics of soil carbon and nitrogen, as well as GHGs, in relation to FTCs. Additionally, it analyzes the impact of FTCs on soil GHGs in a systematic manner. In this study, particular emphasis is given to the following: (i) the reaction mechanism involved; (ii) variations in soil composition in different types of land (e.g., forest, peatland, farmland, and grassland); (iii) changes in soil structure in response to cycles of freezing temperatures; (iv) alterations in microbial biomass and community structure that may provide further insight into the fluctuations in GHGs after FTCs. The challenges identified included the extension of laboratory-scale research to ecosystem scales, the performance of in-depth investigation of the coupled effects of carbon, nitrogen, and water in the freeze-thaw process, and analysis of the effects of FTCs through the use of integrated research tools. The results of this study can provide a valuable point of reference for future experimental designs and scientific investigations and can also assist in the analysis of the attributes of GHG emissions from soil and the ecological consequences of the factors that influence these emissions in the context of global permafrost warming.
2024-05-01 Web of ScienceArctic wetlands are a globally significant store of soil organic carbon. They are often characterized by ice-wedge polygons, which are diagnostic of lowland permafrost, and which greatly influence wetland hydrology and biogeochemistry during summer. The degradation of ice-wedge polygons, which can occur in response to climate change or local disturbance, has poorly understood consequences for biogeochemical processes. We therefore used geochemical analyses from the active layer and top permafrost to identify and compare the dominant biogeochemical processes in high-centered (degraded) and low-centered (pristine) polygons situated in the raised beach sediments and valley-infill sediments of Adventdalen, Central Svalbard. We found similar organic-rich sediments in both cases (up to 38 dry wt.%), but while low-centered polygons were water-saturated, their high-centered counterparts had a relatively dry active layer. Consequently, low-centered polygons showed evidence of iron and sulfate reduction leading to the precipitation of pyrite and siderite, whilst the high-centered polygons demonstrated more oxidizing conditions, with decreased iron oxidation and low preservation of iron and sulfate reduction products in the sediments. This study thus demonstrates the profound effect of ice-wedge polygon degradation on the redox chemistry of the host sediment and porewater, namely more oxidizing conditions, a decrease in iron reduction, and a decrease in the preservation of iron and sulfate reduction products.
2023-07-01 Web of ScienceSoil supports life by serving as a living, breathing fabric that connects the atmosphere to the Earth's crust. The study of soil science and pedology, or the study of soil in the natural environment, spans scales, disciplines, and societies worldwide. Soil science continues to grow and evolve as a field given advancements in analytical tools, capabilities, and a growing emphasis on integrating research across disciplines. A pressing need exists to more strongly incorporate the study of soil, and soil scientists, into research networks, initiatives, and collaborations. This review presents three research areas focused on questions of central interest to scientists, students, and government agencies alike: 1) How do the properties of soil influence the selection of habitat and survival by organisms, especially threatened and endangered species struggling in the face of climate change and habitat loss during the Anthropocene? 2) How do we disentangle the heterogeneity of abiotic and biotic processes that transform minerals and release life-supporting nutrients to soil, especially at the nano-to microscale where mineral-water-microbe interactions occur? and 3) How can soil science advance the search for life and habitable environments on Mars and beyond-from distinguishing biosignatures to better utilizing terrestrial analogs on Earth for planetary exploration? This review also highlights the tools, resources, and expertise that soil scientists bring to interdisciplinary teams focused on questions centered belowground, whether the research areas involve conservation organizations, industry, the classroom, or government agencies working to resolve global chal-lenges and sustain a future for all.
2023-02-01 Web of ScienceArctic permafrost soils store substantial reserves of organic matter (OM) from which microbial transformation contributes significantly to greenhouse gas emissions of CH4 and CO2. However, many younger sediments exposed by glacier retreat and sea level change in fjord landscapes lack significant organic carbon resources, so their capacity to promote greenhouse gas emissions is unclear. We therefore studied the effects of increased temperatures (4 degrees C and 21 degrees C) and OM on rates of Fe(III) reduction, CO2 production, and methanogenesis in three different Holocene sedimentary units from a single site within the former marine limit of Adventdalen, Svalbard. Higher temperature and OM addition generally stimulated CH4 production and CO2 production and an increase in Bacteria and Archaea abundance in all units, whereas an equal stimulation of Fe(II) production by OM amendment and an increase in temperature to 21 degrees C was only observed in a diamicton. We observed an accumulation of Fe(II) in beach and delta deposits as well but saw no stimulating effect of additional OM or increased temperature. Interestingly, we observed a small but significant production of CH4 in all units despite the presence of large reservoirs of Fe(III), sulfate, and nitrate, indicating either the availability of substrates that are primarily used by methanogens or a tight physical coupling between fermentation and methanogenesis by direct electron transfer. Our study clearly illustrates a significant challenge that comes with the large heterogeneity on a narrow spatial scale that one encounters when studying soils that have complex histories.
2022-12-31 Web of ScienceFreshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future.
2022-01-01 Web of ScienceThe Qinghai-Tibet Plateau (QTP) is experiencing severe permafrost degradation, which can affect the hydrological and biogeochemical processes. Yet how the permafrost change affects riverine carbon export remains uncertain. Here, we investigated the seasonal variations of dissolved inorganic and organic carbon (DIC and DOC) during flow seasons in a watershed located in the central QTP permafrost region. The results showed that riverine DIC concentrations (27.81 +/- 9.75 mg L-1) were much higher than DOC concentrations (6.57 +/- 2.24 mg L-1). DIC and DOC fluxes were 3.95 and 0.94 g C m(-2) year(-1), respectively. DIC concentrations increased from initial thaw (May) to freeze period (October), while DOC concentrations remained relatively steady. Daily dissolved carbon concentrations were more closely correlated with baseflow than that with total runoff. Spatially, average DIC and DOC concentrations were positively correlated with vegetation coverage but negatively correlated with bare land coverage. DIC concentrations increased with the thawed and frozen depths due to increased soil interflow, more thaw-released carbon, more groundwater contribution, and possibly more carbonate weathering by soil CO2 formed carbonic acid. The DIC and DOC fluxes increased with thawed depth and decreased with frozen layer thickness. The seasonality of riverine dissolved carbon export was highly dependent on active layer thawing and freezing processes, which highlights the importance of changing permafrost for riverine carbon export. Future warming in the QTP permafrost region may alter the quantity and mechanisms of riverine carbon export.
2019-06-17 Web of ScienceArctic warming may induce slope failure in upland permafrost soils. These landslide-like events, referred to as active layer detachments (ALDs), redistribute soil material into hydrological networks during spring melt and heavy rainfall. In 2011, 2013 and 2014, fluvial sediments from the West River at the Cape Bounty Arctic Watershed Observatory were sampled where ALDs occurred in 2007-2008. Two ALD-impacted subcatchments were examined exhibiting either continuing disturbance or short-term stabilization. Solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy and targeted biomarker analysis via gas chromatography-mass spectrometry were used to investigate shifts in organic matter (OM) composition. Additionally, radiocarbon ages were determined using accelerator mass spectrometry. Biomarker concentrations and O-alkyl carbon assessed via NMR were both lower in sediments nearest the active disturbance and increased in sediments downstream where other aquatic inputs became more dominant. This suggests immobilization of recalcitrant OM near the ALD and the sustained transport of labile ALD-derived OM further downstream. Shifts toward older radiocarbon dates along the river between 2011 and 2014 suggest the continued transport of permafrost-derived OM downstream. The stabilizing subcatchment revealed high O-alkyl carbon via NMR and increased concentrations of unaltered terrestrial-derived biomarkers indicative of enhanced OM accumulation following ALD activity. The relatively young radiocarbon ages from these sediments suggest accumulation from contemporary sources and potential burial of the previously dispersed ALD inputs. Within the broader context of Arctic climate change, these results portray a complex environmental trajectory for thaw-released permafrost-derived OM and highlight uncertainty in the relationship between lability and persistence upon release by permafrost disturbance. (C) 2018 Elsevier Ltd. All rights reserved.
2018-09-01 Web of SciencePermafrost thaw induced by climate change will cause increased release of nutrients and organic matter from the active layer to Arctic streams and, with increased water temperature, will potentially enhance algal biomass and nutrient uptake. Although essential for accurately predicting the response of Arctic streams to environmental change, knowledge of nutrient release on current Arctic in-stream processing is limited. Addressing this research gap, we quantified nutrient uptake of short-term releases of NO3-, PO43- and NH4+ during peak snowmelt season in five streams of contrasting physiochemical characteristics (from unstable, highly turbid to highly stable, clear-water systems) in north-east Greenland to elucidate the major controls driving nutrient dynamics. Releases were plus or minus acetate to evaluate uptake dynamics with and without a dissolved organic carbon source. To substantiate limiting nutrients to algal biomass, nutrient-diffusing substrates were installed in the five streams for 16days with NH4+, PO43- or NH4+ + PO43- on organic and inorganic substrates. Observed low uptake rates were due to a combination of low nutrient and DOC concentrations, combined with low water temperature and primary producer biomass, and substantial variation occurred between streams. N was found to be the primary limiting nutrient for biofilm, whilst streams displayed widespread PO43- limitation. This research has important implications for future changes in nutrient processing and export in Arctic streams, which are predicted to include increased nutrient uptake rates due to increased nutrient availability, warmer water temperatures and increased concentration of labile carbon. These changes could have ecosystem and landscape-wide impacts.
2018-03-19 Web of SciencePredicting the response of dissolved nitrogen export from Arctic watersheds to climate change requires an improved understanding of seasonal nitrogen dynamics. Recent studies of Arctic rivers emphasize the importance of spring thaw as a time when large fluxes of nitrogen are exported from Arctic watersheds, but studies capturing the entire hydrologic year are rare. We examined the temporal variability of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) concentrations in six streams/rivers in Arctic Alaska from spring melt to fall freezeup (May through October) in 2009 and 2010. DON concentrations were generally high during snowmelt and declined as runoff decreased. DIN concentrations were low through the spring and summer and increased markedly during the late summer and fall, primarily due to an increase in nitrate. The high DIN concentrations were observed to occur when seasonal soil thaw depths were near maximum extents. Concurrent increases in DIN and DIN-to-chloride ratios suggest that net increases from nitrogen sources contributed to these elevated DIN concentrations. Our stream chemistry data, combined with soil thermistor data, suggest that downward penetration of water into seasonally thawed mineral soils, and reduction in biological nitrogen assimilation relative to remineralization, may increase DIN export from Arctic watersheds during the late summer and fall. While this is part of a natural cycle, improved understanding of seasonal nitrogen dynamics is particularly important now because warmer temperatures in the Arctic are causing earlier spring snowmelt and later fall freezeup in many regions.
2017-07-01 Web of Science