共检索到 83

This work uses a mixture of observations from surface remote sensing (AERONET) and satellite remote sensing (OMI) to uniquely compute the atmospheric column loading of black carbon (BC) mass concentration density (MCD) and number concentration density (NCD) on a grid-by-grid, day-by-day basis at 0.25 degrees x0.25 degrees over rapidly developing and biomass burning (BB) impacted regions in South, Southeast, and East Asia. This mixture of observations is uniformly analyzed based on OMI NO2 retrievals, OMI Near ultraviolet band absorption aerosol optical depth and single scattering albedo (SSA), and AERONET visible and near-infrared band SSA observations, in connection with an inversely applied MIE mixing model approach. This method uniquely solves for the unbiased spatial and temporal domains based on variance maximization of daily NO2. These locations in space and time are then used to quantify the distribution of all possible individual particle core and refractory shell sizes as constrained by all band-by-band observations of SSA from AERONET. Finally, the range of NCD and MCD are computed from the constrained range of per-particle core and refractory shell size on a grid-by-grid and day-byday basis. The maps of MCD and NCD are consistent in space and time with known urban, industrial, and BB sources. The statistical distributions are found to be non-normal, with the region-wide mean, 25th, 50th, and 75th percentile MCD [mg/m2] of 90.3, 56.1, 81.1, and 111 respectively, and NCD [x1012 particles/m2] of 8.76, 4.63, 7.39, and 11.3 respectively. On a grid-by-grid basis, a significant amount of variation is found, particularly over Myanmar, Laos, northern Thailand, and Vietnam, with this subregional mean, 25th, 50th, and 75th MCD [mg/m2] of 90.7, 56.1, 81.3, and 112 respectively and NCD [x1012 particles/m2] of 9.66, 5.49, 8.33, and 12.3 respectively. On a day-to-day basis, events are determined 121 days in 2016, during which the computed statistics of MCD and NCD have mean and uncertainty ranges which scale with each other. However, there are 11 days where the uncertainty ratio of NCD values is larger than 1 while the uncertainty ratio of MCD is small, and 5 days where the reverse is observed, indicating that the particle size is strongly atypical on these days, consistent with mixed aerosol sources, a substantial change in the aerosol aging, or other such factors including a substantial region of overlap between BB and urban sources. The high values observed from March to May lead to an extended BB season as compared to previous work focusing on fire radiative power, NO2, and models, which show a shorter season (usually ending in early April). The results are consistent with BC being able to transport significant distances. The new approach is anticipated to provide support for improving radiative forcing calculations, estimating emissions inventories, and providing a basis by which models can compare against observations.

2024-12-15 Web of Science

Biomass burning play a key role in the global carbon cycle by altering the atmospheric composition, and affect regional and global climate. Despite its importance, a very few high-resolution records are available worldwide, especially for recent climate change. This study analyzes levoglucosan, a specific tracer of biomass burning emissions, in a 38-year ice core retrieved from the Shulehe Glacier No. 4, northeastern Tibetan Plateau. The levoglucosan concentration in the Shulehe Glacier No. 4 ice core ranged from 0.1 to 55 ng mL(-1), with an average concentration of 8 +/- 8 ng mL(-1). The concentrations showed a decreasing trend from 2002 to 2018. Meanwhile, regional wildfire activities in Central Asian also exhibited a declining trend during the same period, suggesting the potential correspondence between levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the fire activity of Central Asia. Furthermore, a positive correlation also exists between the levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the wildfire counts in Central Asia from 2002 to 2018. While backward air mass trajectory analysis and fire spots data showed a higher distribution of fire counts in South Asia compared to Central Asia, but the dominance of westerly circulation in the northern TP throughout the year. Therefore, the levoglucosan in the Shulehe Glacier No. 4 provides clear evidence of Central Asian wildfire influence on Tibetan Plateau glaciers through westerlies. This highlights a great importance of ice core data for wildfire history reconstruction in the Tibetan Plateau Glacier regions.

2024-12

The light absorption enhancement (E-abs) of black carbon (BC) coated with non-BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of E-abs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. E-abs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in E-abs at 520 nm, with an estimated contribution percentages of 47.5%-94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on E-abs were evaluated through comparing measured E-abs with that calculated by the Mie theory. After OH exposure of 1 x 10(10) molecules cm(-3) s, the thickening of coating materials led to an E-abs increase by 3.2% +/- 1.6%, while the chemical composition changes or photobleaching induced an E-abs decrease by 4.7% +/- 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light-absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC. Plain Language Summary Understanding how black carbon (BC) coated with non-BC materials affects light absorption is crucial for assessing its impact on the Earth's climate. However, there is limited knowledge about how this process changes when BC, particularly from biomass burning, is exposed to light. Biomass burning is a significant global source of BC. This study investigated the changes in light absorption of BC from burning corn straw as it aged in a controlled environment. We measured the light absorption of BC with and without its coating materials. Our results showed that the main cause of increased light absorption was the lensing effect of the coating materials, which was more significant than the light absorption by the coating materials themselves. We also discovered that as the coating materials thickened, BC absorbed more light. However, changes in the chemical composition of the coating materials led to a decrease in total absorption. These findings suggest that while coated BC initially has a warming effect on the climate, this effect diminished as the BC ages. The decrease is likely due to the breakdown of light-absorbing compounds in the coating materials, such as polycyclic aromatic hydrocarbons (PAHs).

2024-08-28 Web of Science

Aerosol chemical components such as black carbon (BC) and brown carbon (BrC) regulate aerosol optical properties, which in turn drive the atmospheric radiative forcing estimations due to aerosols. In this study, we used the long-term measurements from AERONET (Aerosol Robotic Network) to better understand the aerosol types and composition with respect to their seasonal and spatial variabilities in peninsular Southeast Asia (PSEA, here defined as Vietnam, Cambodia, Thailand, Laos, and Myanmar). Two methods (i.e., aerosol type cluster and aerosol component retrieval) were applied to determine the aerosol type and chemical composition during the biomass-burning (BB) season. AERONET sites in northern PSEA showed a higher AOD (aerosol optical depth) compared to that of southern PSEA. Differences in land use pattern, geographic location, and weather regime caused much of the aerosol variability over PSEA. Lower single-scattering albedo (SSA) and higher fine-mode fraction (FMF) values were observed in February and March, suggesting the predominance of BB type aerosols with finer and stronger absorbing particles during the dry season. However, we also found that the peak BB month (i.e., March) in northern PSEA may not coincide with the lowest SSA once dust particles have mixed with the other aerosols. Furthermore, we investigated two severe BB events in March of 2014 and 2015, revealing a significant BrC fraction during BB event days. On high AOD days, although the BC fraction was high, the BrC fraction remained low due to lack of aerosol aging. This study highlights the dominance of carbonaceous aerosols in the PSEA atmosphere during the BB season, while also revealing that transported dust particles and BrC aerosol aging may introduce uncertainties into the aerosol radiative forcing calculation.

2024-06-01 Web of Science

Throughcontinuous field observation and comprehensive chemicalanalysis, this study quantified the impacts of wildfire emissions,which have occurred repeatedly not only in a long-term period butalso with extensive spatial coverage, on the Himalayan ecosystem. Himalayas and Tibetan Plateau (HTP) is important forglobal biodiversityand regional sustainable development. While numerous studies haverevealed that the ecosystem in this unique and pristine region ischanging, their exact causes are still poorly understood. Here, wepresent a year-round (23 March 2017 to 19 March 2018) ground- andsatellite-based atmospheric observation at the Qomolangma monitoringstation (QOMS, 4276 m a.s.l.). Based on a comprehensive chemical andstable isotope (N-15) analysis of nitrogen compounds andsatellite observations, we provide unequivocal evidence that wildfireemissions in South Asia can come across the Himalayas and threatenthe HTP's ecosystem. Such wildfire episodes, mostly occurringin spring (March-April), not only substantially enhanced theaerosol nitrogen concentration but also altered its composition (i.e.,rendering it more bioavailable). We estimated a nitrogen depositionflux at QOMS of similar to 10 kg N ha(-1) yr(-1), which is approximately twice the lower value of the critical loadrange reported for the Alpine ecosystem. Such adverse impact is particularlyconcerning, given the anticipated increase of wildfire activitiesin the future under climate change.

2024-05

Biomass burning (BB) greatly impacts the Maritime Continent through various mechanisms including agricultural burning, land clearing and natural response to drought. The dynamic characteristics of BB in terms of its spatiotemporal distribution, seasonality, transport mechanism, and aerosol properties have prompted numerous research efforts including field campaigns, in -situ measurements, remote sensing, and modelling. Although the differing perspectives of these studies have offered insights on understanding the regional BB issues, it is challenging to compare and resolve the wider picture because of the diversity of approaches. Human -induced global warming has certainly caused multiple observed changes in the regional meteorological characteristics. In this study, we review BB events in the Maritime Continent from 2012 to 2021, focusing on the meteorological influence and knowledge evolution in cloud -aerosol -radiation (CAR). Unlike other reviews, our review examines the occurrence of BB events using synergistic application of ground -based measurement, global reanalysis model and satellite product, which allows us to examine the anomalies for comparison with other studies and identify the unique features of the event. We identified four dominant modes of variability responsible for the occurrence of large-scale BB in the Maritime Continent: (1) El Nin similar to o Southern Oscillations (ENSO), (2) extreme positiveIndian Ocean Dipole (pIOD), (3) tropical cyclone (TC) activity, and (4) Madden -Julian Oscillations (MJO). We reconcile the past CAR studies and summarize their findings based on the four key CAR mechanisms: (1) instantanous radiative forcing from aerosol -radiation interactions, IRFari (2) and its subsequent adjustments, SAari, (3) instantanous radiative forcing from aerosol -cloud interactions, IRFaci, and (4) and its subsequent adjustments, SAaci. We urge future CAR studies in the Maritime Continent should focus on accurate characterization of the composition of biomass burning plume which is a mixture of peatland, agricultural burning and anthropogenic sources.

2024-03-01 Web of Science

We measured black carbon (BC) with a seven-wavelength aethalometer (AE-31) at the Nam Co Lake (NCL), the hinterland of the Tibetan Plateau (TP) from May 2015 to April 2016. The daily average concentration of BC was 145 +/- 85 ng m(-3), increasing by 50% since 2006. The seasonal variation of BC shows higher concentrations in spring and summer and lower concentrations in autumn and winter, dominated by the adjacent sources and meteorological conditions. The diurnal variation of BC showed that its concentrations peaked at 9:00-16:00 (UTC + 8), significantly related to local human activities (e.g., animal-manure burning and nearby traffic due to the tourism industry). The concentration-weighted trajectory (CWT) analysis showed that the long-distance transport of BC from South Asia could also be a potential contributor to BC at the NCL, as well as the biomass burning by the surrounding residents. The analyses of the absorption coefficient and absorption angstrom ngstrom exponent show the consistency of sourcing the BC at the NCL. We suggest here that urgent measures should be taken to protect the atmospheric environment at the NCL, considering the fast-increasing concentrations of BC as an indicator of fuel combustion.

2024-02

The circum-Arctic region experienced serious fires in 2019 and 2020. Biomass burning is considered a primary source of black carbon (BC) aerosols. BC contributes to Arctic warming and impacts snow/ice melting. However, the impacts of biomass burning on BC in the Arctic during these recent serious fires have not been quantified in detail. In this study, based on numerical simulations using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), we calculated the contribution ratios of biomass burning to Arctic BC and revealed its transport pathways. Affected by biomass burning emissions, the near-surface BC concentrations over the terrestrial areas within the Arctic Circle were highest in summer, and declined in spring and autumn. Spatially, high-concentration levels of BC were distributed in the Russian central and eastern areas. Biomass burning accounted for 63.72% and 45.18% of the summer BC in the Arctic near-surface and middle troposphere, respectively. In the near-surface, the contributions from local Arctic sources were comparable to those from sources outside the Arctic Circle in summer. In the middle troposphere, contributions from sources outside the Arctic Circle were dominant. In summer, BC originating from biomass burning in Siberia was transported a short distance by southwesterly winds to the central Arctic near-surface, while the enhanced southwesterly winds in the middle troposphere transported BC from Siberia, Alaska and northern Canada to the central Arctic and Greenland. In spring and autumn, most BC originating from biomass burning in the near-surface of Eurasia was transported eastward by westerly winds and then transported northward over the North Pacific Ocean, and the long distance may have resulted in fewer effects on the Arctic. These results highlight the important role of biomass burning in the Arctic environment under a warming climate.

2023-12

The Tibetan Plateau, referred as the last pure land on the earth, is frequently exposure to heavy air pollution during springtime. Here, we find South Asia biomass burning is crucial to cause the heavy springtime air pollution over the Tibetan Plateau, which explain the most (more than 60%) of aerosol components in the region, although its contribution to gaseous pollutants is not significant. South Asian biomass burning mainly affects primary PM2.5 components black carbon (65.3%) and organic carbon (79.5%) over the Tibetan Plateau, but has little influence (less than 5%) on second aerosol components (sulfate, nitrate, and ammonium). The transboundary transmissions of aerosols were regulated by a combination of large-scale westerly winds and regional mountain-valley winds in springtime. In addition to worsen air quality, aerosols from South Asian biomass burning lead to surface temperature decrease of 0.06 degrees C, and precipitation reduction of 3.9 mm over the Tibetan Plateau during springtime. These climate changes will threat the fragile ecosystem over the Tibetan Plateau, such as plant growth and flowering during springtime. Overall, our findings demonstrate a necessary and urgency to reduce biomass burning emissions over South Asia to protect the Tibetan Plateau environment.

2023-11-15

Light-absorbing carbonaceous aerosols primarily comprise black carbon (BC) and brown carbon (BrC), and they play a key role in atmospheric radiative forcing and global climate. Here, we present the light absorption, potential sources, and health risks of BC and BrC during the prescribed burning season at an urban background site in Brisbane based on the measurements with a seven-wavelength aethalometer. The enhancements in light absorption at 880 nm were potentially governed by the transport of prescribed burning emissions. Source apportionment results revealed that fossil-fuel (FF) combustion contributed more to the total equivalent BC (eBC) (67%) over the entire measurement period as compared to biomass burning (BB). The percentages of secondary BrC to BrC for BB- and FF-dominated periods were 60% and 21%, respectively, indicating the greater potential of BB emissions to form secondary BrC compared to FF emissions. The diurnal trend showed that the peaks of secondary BrC occurred at nighttime with high relative humidity, implying that the formation of secondary BrC was potentially associated with aqueous reactions. Potential source contribution function (PSCF) results suggested that air masses originating from southern and northern Brisbane were the potential pollution sources, where BB and traffic emissions were dominant. In addition, the health risks of eBC (based on equivalent numbers of passively smoked cigarettes) remarkably increased for periods with elevated eBC emissions, potentially originating from prescribed burns. These findings contribute to our understanding of the impact of BB on the light absorption properties of BC and BrC and could serve as a reference for government officials when performing prescribed burns with reduced environmental and health effects.

2023-11-15 Web of Science
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 末页
  • 跳转
当前展示1-10条  共83条,9页