共检索到 5

In this study, we present an on-chip analytical method using a microfluidic device to characterize the mechanical properties in growing roots. Roots are essential organs for plants and grow under heterogeneous conditions in soil. Especially, the mechanical impedance in soil significantly affects root growth. Understanding the mechanical properties of roots and the physical interactions between roots and soil is important in plant science and agriculture. However, an effective method for directly evaluating the mechanical properties of growing roots has not been established. To overcome this technical issue, we developed a polydimethylsiloxane (PDMS) microfluidic device integrated with a cantilevered sensing pillar for measuring the protrusive force generated by the growing roots. Using the developed device, we analyzed the mechanical properties of the roots in a model plant, Arabidopsis thaliana. The root growth behavior and the mechanical interaction with the sensing pillar were recorded using a time-lapse microscopy system. We successfully quantified the mechanical properties of growing roots including the protrusive force and apparent Young's modulus based on a simple physical model considering the root morphology. (c) 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

期刊论文 2025-07-01 DOI: 10.1002/tee.70081 ISSN: 1931-4973

Tree architecture is an important component of forest community dynamics - taller trees with larger crowns often outcompete their neighbors, but they are generally at higher risk of wind-induced damage. Yet, we know little about wind impacts on tree architecture in natural forest settings, especially in complex tropical forests. Here, we use airborne light detection and ranging (LiDAR) and 30 yr of forest inventory data in Puerto Rico to ask whether and how chronic winds alter tree architecture. We randomly sampled 124 canopy individuals of four dominant tree species (n = 22-39). For each individual, we measured slenderness (height/stem diameter) and crown area (m2) and evaluated whether exposure to chronic winds impacted architecture after accounting for topography (curvature, elevation, slope, and soil wetness) and neighborhood variables (crowding and previous hurricane damage). We then estimated the mechanical wind vulnerability of trees. Three of four species grew significantly shorter (2-4 m) and had smaller crown areas in sites exposed to chronic winds. A short-lived pioneer species, by contrast, showed no evidence of wind-induced changes. We found that three species' architectural acclimation to chronic winds resulted in reduced vulnerability. Our findings demonstrate that exposure to chronic, nonstorm winds can lead to architectural changes in tropical trees, reducing height and crown areas. La arquitectura de los & aacute;rboles es un componente importante de la din & aacute;mica de la comunidad forestal: los & aacute;rboles m & aacute;s altos con copas m & aacute;s grandes suelen sobrepasar a sus vecinos, pero por lo general corren m & aacute;s riesgo de sufrir da & ntilde;os inducidos por el viento. Sin embargo, es poco lo que se sabe sobre el impacto del viento en la arquitectura de los & aacute;rboles en entornos forestales naturales, sobre todo en bosques tropicales complejos. En este caso, utilizamos LiDAR y 30 a & ntilde;os de datos de campo en Puerto Rico para preguntarnos si los vientos cr & oacute;nicos alteran la arquitectura de los & aacute;rboles. Se tom & oacute; una muestra aleatoria de 124 individuos del dosel de cuatro especies arb & oacute;reas dominantes (n = 22-39). De cada individuo, medimos la esbeltez (altura/di & aacute;metro) y el & aacute;rea de la copa (m2) y evaluamos si la exposici & oacute;n a vientos cr & oacute;nicos influ & iacute;a en la arquitectura teniendo en cuenta la topograf & iacute;a (curvatura, elevaci & oacute;n, pendiente, humedad del suelo) y las variables del vecindario (aglomeraci & oacute;n y da & ntilde;os previos por huracanes). Luego, estimamos la vulnerabilidad mec & aacute;nica de los & aacute;rboles al viento. En los lugares expuestos a vientos cr & oacute;nicos, tres de las cuatro especies crecieron mucho menos (2-4 m) y tuvieron & aacute;reas de copa m & aacute;s peque & ntilde;as. Cecropia schreberiana, en cambio, no mostr & oacute; indicios de cambios inducidos por el viento. La aclimataci & oacute;n arquitect & oacute;nica de tres especies a los vientos cr & oacute;nicos llevaba a una reducci & oacute;n de la vulnerabilidad. Nuestros hallazgos demuestran que la exposici & oacute;n a vientos cr & oacute;nicos puede provocar cambios arquitect & oacute;nicos en los & aacute;rboles tropicales, reduciendo su altura y la superficie de sus copas.

期刊论文 2025-06-12 DOI: 10.1111/nph.70294 ISSN: 0028-646X

AimsHigh root tensile strength (RTS) is crucial for tree stability, windthrow resistance, soil reinforcement, and erosion control. However, RTS varies across species, and the underlying causes remain poorly understood. RTS is directly linked to anatomical structure and fiber morphology, which influence its resistance to stress. This study explores the relationship between xylem anatomy and RTS in four broadleaved species-Acer velutinum, Fagus orientalis, Quercus castaneifolia, and Carpinus betulus-from the Hyrcanian forests of Iran.MethodsRTS was measured, and fiber biometry, including fiber length, width, lumen width, and wall thickness, was quantified on macerated fibers. Vessel lumen fraction was also assessed through microscopic examination of root cross-sections.ResultsA. velutinum (Persian maple) exhibited the highest RTS, while F. orientalis displayed the lowest. A negative power relationship was observed between root diameter and RTS. Among fiber traits, fiber length and width had the strongest positive influence on RTS. Persian maple, as the species with strongest root, possessed the longest and widest fibers. Conversely, F. orientalis, the weakest one, displayed the shortest and thinnest fibers with the most robust cell walls. The relationship between quantitative vascular features of xylem and RTS was inconclusive, across species.ConclusionThis study revealed the complex interplay between xylem anatomical traits and RTS. Fiber characteristics, particularly a dense network of long, wide, and more flexible fibers, were found to strengthen root. Further research should explore the interplay of multiple anatomical features to provide a comprehensive understanding of RTS.

期刊论文 2024-12-17 DOI: 10.1007/s11104-024-07148-x ISSN: 0032-079X

Grassland degradation and reduced yields are often linked to the root soil composite of perennial alfalfa roots. This study introduces a novel modeling approach to accurately characterize root biomechanical properties, assist in the design of soil-loosening and root-cutting tools. Our model conceptualizes the root as a composite structure of cortex and stele, applying transversely isotropic properties to the stele and isotropic properties to the cortex. Material parameters were derived from longitudinal tension, longitudinal compression, transverse compression, and shear tests. The constitutive model of stele was Hashin failure criteria, accounting for differences in tensile and compressive strengths. Results reveal that root tensile strength mainly depends on the stele, with its tensile properties exceeding compressive and transverse strengths by 4-10 times. In non-longitudinal tensile stress scenarios, like shear and transverse compression tests, the new model demonstrated superior accuracy over conventional models. Results of shear tests were further validated using non-parametric statistical analysis. This study provides a finite element method (FEM) modeling approach that, by integrating root anatomical features and biomechanical properties, significantly enhances simulation accuracy. This provides a tool for designing low-energy consumption components in grassland degradation restoration and conservation tillage.

期刊论文 2024-12-01 DOI: 10.3390/agronomy14123033

Plant seeds and fruits, like those of Ocimum basilicum, , develop a mucilaginous envelope rich in pectins and cellulosic fibers upon hydration. This envelope promotes adhesion for attachment to soils and other substrates for dispersal and protection of the seed for a safe germination. Initially at hydration, the mucilage envelope demonstrates low adhesion and friction, but shows increasing adhesive and frictional properties during dehydration. However, the mechanisms underlying the cellulose fiber arrangement and the mechanical properties, especially the elasticity modulus of the mucilage envelope at different hydration conditions are not fully known. In this study, which is based on scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and light microscopy, the structure of the seed coat and arrangement of the cellulose fibers of basil seeds were characterized. Moreover, we performed pull-off force measurements to estimate adhesive properties and JKR-tests to estimate E-modulus of the mucilage at different hydration levels. Microscopy results demonstrate that cellulose fibers are split at their free ends into smaller fibrils, which might enhance the adhesive properties of the mucilage. Adhesive forces in contact increased during dehydration and reached maximum of 33 mN shortly before complete dehydration. The E-modulus of the mucilage changed from 1.4 KPa in water to up to 2.1 MPa in the mucilage at the maximum of its adhesion performance. Obtained results showed hydrogel-like mechanical properties during dehydration and cellulose fiber structures similar to the nanofibrous systems in other organisms with strong adhesive properties. Statement of significance This paper reveals the hierarchical cellulose fiber structure in Ocimum basilicum's mucilaginous seed coat, suggesting increased fiber splitting towards the end, potentially enhancing adhesion contact areas. Mechanical tests explore elasticity modulus and adhesion force during various hydration stages, crucial as these properties evolve with mucilage desiccation. A rare focus on mucilaginous seed coat mechanical properties, particularly cellulose-reinforced fibers, provides insight into the hydrogel-like mucilage of plant seeds. Adhesion forces peak just before complete desiccation and then decline rapidly. As mucilage water content decreases, the E-modulus rises, displaying hydrogel-like properties during early dehydration stages with higher water content. This study might bring the focus to plant seeds as inspiration for biodegradable glues and applications for hydrogel research. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

期刊论文 2024-08-01 DOI: 10.1016/j.actbio.2024.06.045 ISSN: 1742-7061
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页