共检索到 5

Owing to a lack of vertical observations, the impacts of black carbon (BC) on radiative forcing (RF) have typically been analyzed using ground observations and assumed profiles. In this study, a UAV platform was used to measure high-resolution in-situ vertical profiles of BC, fine partides (PM2.5), and relevant meteorological parameters in the boundary layer (BL). Further, a series of calculations using actual vertical profiles of BC were conducted to determine its impact on RF and heating rate (HR). The results show that the vertical distributions of BC were strongly affected by atmospheric thermodynamics and transport. Moreover. Three main types of profiles were revealed: Type I, Type II, Type III, which correspond to homogenous profiles (HO), negative gradient profiles (NG), and positive gradient profiles (PG), respectively. Types I and II were related to the diurnal evolution of the BL, and Type III was caused by surrounding emissions from high stacks and regional transport. There were no obvious differences in RF calculated for HO profiles and corresponding surface BC concentrations, unlike for NG and PG profiles. RF values calculated using surface BC concentrations led to an overestimate of 13.2 W m(-2) (27.5%, surface) and 18.2 W m(-2) (33.4%, atmosphere) compared to those calculated using actual NG profiles, and an underestimate of approximately 15.4 W m(-2) (35.0%, surface) and 16.1 W m(-2) (29.9%, atmosphere) compared to those calculated using actual PG profiles. In addition, the vertical distributions of BC HR exhibited dear sensitivity to BC profile types. Daytime PG profiles resulted in a positive vertical gradient of HR, which may strengthen temperature inversion at high altitudes. These findings indicate that calculations that use BC surface concentrations and ignore the vertical distribution of BC will lead to substantial uncertainties in the effects of BC on RE and HR. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2021-02-20 DOI: 10.1016/j.scitotenv.2020.144135 ISSN: 0048-9697

Black carbon (BC) aerosol is a significant, short-lived climate forcing agent. To further understand the effects of BCs on the regional climate, the warming effects of BCs from residential, industrial, power and transportation emissions are investigated in Asian regions during summer using the state-of-the-art regional climate model RegCM4. BC emissions from these four sectors have very different rates and variations. Residential and industrial BCs account for approximately 85% of total BC emissions, while power BCs account for only approximately 0.19% in Asian regions during summer. An investigation suggests that both the BC aerosol optical depth (AOD) and direct radiative forcing (DRF) are highly dependent on emissions, while the climate effects show substantial nonlinearity to emissions. The total BCs AOD and clear-sky top of the atmosphere DRF averaged over East Asia (100-130 degrees E, 20-50 degrees N) are 0.02 and +1.34 W/m(2), respectively, during summer. Each sector's BC emissions may result in a warming effect over the region, leading to an enhanced summer monsoon circulation and a subsequent local decrease (e.g., northeast China) or increase (e.g., south China) in rainfall in China and its surrounding regions. The near surface air temperature increased by 0.2 K, and the precipitation decreased by approximately 0.01 mm/day in east China due to the total BC emissions. The regional responses to the BC warming effects are highly nonlinear to the emissions, which may be linked to the influences of the perturbed atmospheric circulations and climate feedback. The nonuniformity of the spatial distribution of BC emissions may also have significant influences on climate responses, especially in south and east China. The results of this study could aid us in better understanding BC effects under different emission conditions and provide a scientific reference for developing a better BC reduction strategy over Asian regions.

期刊论文 2019-11-01 DOI: 10.1007/s00382-019-04863-5 ISSN: 0930-7575

Using idealized climate model simulations, we investigate the effectiveness of black carbon (BC) aerosols in warming the planet relative to CO2 forcing. We find that a 60-fold increase in the BC aerosol mixing ratio from the present-day levels leads to the same equilibrium global mean surface warming (similar to 4.1 K) as for a doubling of atmospheric CO2 concentration. However, the radiative forcing is larger (similar to 5.5 Wm(-2)) in the BC case relative to the doubled CO2 case (similar to 3.8 Wm(-2)) for the same surface warming indicating the efficacy (a metric for measuring the effectiveness) of BC aerosols to be less than CO2. The lower efficacy of BC aerosols is related to the differences in the shortwave (SW) cloud feedback: negative in the BC case but positive in the CO2 case. In the BC case, the negative SW cloud feedback is related to an increase in the tropical low clouds which is associated with a northward shift (similar to 7 degrees) of the Intertropical Convergence Zone (ITCZ). Further, we show that in the BC case fast precipitation suppression offsets the surface temperature mediated precipitation response and causes similar to 8% net decline in the global mean precipitation. Our study suggests that a feedback between the location of ITCZ and the interhemispheric temperature could exist, and the consequent SW cloud feedback could be contributing to the lower efficacy of BC aerosols. Therefore, an improved representation of low clouds in climate models is likely the key to understand the global climate sensitivity to BC aerosols.

期刊论文 2019-08-01 DOI: 10.1088/1748-9326/ab21e7 ISSN: 1748-9326

Three global chemistry-transport models (CTM) are used to quantify the radiative forcing (RF) from aviation NOx emissions, and the resultant reductions in RF from coupling NOx to aerosols via heterogeneous chemistry. One of the models calculates the changes due to aviation black carbon (BC) and sulphate aerosols and their direct RF, as well as the BC indirect effect on cirrus cloudiness. The surface area density of sulphate aerosols is then passed to the other models to compare the resulting photochemical perturbations on NOx through heterogeneous chemical reactions. The perturbation on O-3 and CH4 (via OH) is finally evaluated, considering both short- and long-term O-3 responses. Ozone RF is calculated using the monthly averaged output of the three CTMs in two independent radiative transfer codes. According to the models, column ozone and CH4 lifetime changes due to coupled NOx/aerosol emissions are, on average, +0.56 Dobson Units (DU) and -1.1 months, respectively, for atmospheric conditions and aviation emissions representative of the year 2006, with an RF of +16.4 and -10.2 mW/m(2) for O-3 and CH4, respectively. Sulphate aerosol induced changes on ozone column and CH4 lifetime account for -0.028 DU and +0.04 months, respectively, with corresponding RFs of -0.63 and +0.36 mW/m(2). Soot-cirrus forcing is calculated to be 4.9 mW/m(2).

期刊论文 2015-06-01 DOI: 10.3390/atmos6060751

As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.

期刊论文 2004-07-01 DOI: 10.1007/BF02915731 ISSN: 0256-1530
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页