共检索到 4

Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives. In vitro tests demonstrated that Lemongrass oil (LG) (0.2%) achieved the highest mortality of nematode juveniles (J2s) at 99.44% within 48 h, while Pochonia chlamydosporia (Pc) (2%) and Purpuricillium lilacinum (Pl) (2%) reduced egg hatching rates to 9.57% and 11.43%, respectively. Neem oil (NM) (0.2%) was the most effective in preventing J2 root penetration (4.42%). In vivo, a combination treatment (T7) of NM (0.2%), Trichoderma harzianum (Tz) (2%), Pl (2%), and LG (0.2%) applied at 10 day intervals significantly reduced the nematode reproduction factor to 0.035, comparable to the chemical control Bayer Velum Prime (R) (Fluopyram 34.48% W/W SC) (0.031). T5 (NM and Tz) resulted in the highest shoot biomass (236.73 +/- 1.38 g), while Bayer Velum Prime (R) (Fluopyram 34.48% W/W SC) increased root biomass (31.75 +/- 1.24 g). Additionally, T7 produced the longest shoots (63.37 +/- 0.74 cm) and roots (36.80 +/- 0.3 cm), with fewer root galls (55.67 +/- 1.53) and egg masses (4 +/- 0.01). T7 also minimized the final soil nematode population to 106.33 +/- 1.01 per 100 g, closely followed by T8 (94.67 +/- 0.89). These results indicate that combining NM, Tz, Pl and LG provide effective nematode control without phytotoxic effects, enhancing plant growth and offering a promising sustainable alternative to chemical nematicides.

期刊论文 2025-01-02 DOI: 10.1038/s41598-024-84292-5 ISSN: 2045-2322

Root-knot nematode (RKN) (Meloidogyne incognita) is a major plant parasitic nematode that severely damages crops, leading to significant yield losses and substantial economic impact globally. This study aims to investigate an environmentally sustainable biological strategy for mitigating parasitic populations of the root-knot nematode, M. incognita. Specifically, the research focuses on assessing the nematicidal efficacy of Acalypha indica against M. incognita mortality and second-stage juveniles' (J2) hatching under controlled in vitro conditions. A. indica leaf aqueous extract was applied at varying concentrations (250, 500, 750, and 1000 ppm) to J2s and egg masses of M. incognita. Notably, at 1000 ppm, a significant increase in J2 mortality and hatching inhibition was observed, while 250 ppm concentration showed the least favorable outcome; with mortality rates ranging from 22-82%. Chemical analysis via gas chromatography-mass spectroscopy (GC-MS) identified Benzoic acid, Cyclooctasiloxane, and 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris (trimethylsiloxy) tetrasiloxane as predominant compounds. The nematicidal activity of A. indica leaf extract was further validated through in silico molecular docking, revealing that benzoic acid, Cyclooctasiloxane, and 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris (trimethylsiloxy) tetrasiloxane bind to the ODR 3 protein of M. incognita with binding energies of -15.72, -8.91, and -7.35 kJ/mol, respectively. These findings hold promise for environmentally benign root-knot nematode management, contributing to improved soil health.

期刊论文 2024-12-31 DOI: 10.1080/23311932.2024.2405027 ISSN: 2331-1932

The root-knot nematode, Meloidogyne incognita, poses a significant economic threat as an endoparasite for various vegetables, including cabbage. Utilizing botanicals is an essential aspect of green technology to combat root-knot nematode infection. This study investigates the efficacy of four botanicals (Oxalis corniculata, Ricinus communis, Lantana camara, and Pluchea lanceolata) as emerging phyto-nematicides against M. incognita using both in vitro experiments (J2 mortality after 24, 36 and 48 hours exposure to 3000, 2000, 1000, 500, and 0 mg/L of the four botanicals and then determination egg hatching of M. incognita after 3 and 5 days incubation with various concentrations of the selected botanicals) and pot experiments. In the in vitro study, different extracts from the leaves of botanicals were applied to the second juvenile stage (J2) of M. incognita. The highest mortality of J2 and reduction in egg hatching for O. corniculata extract (89.96 and 86.79%), while the lowest effects (9.01 and 11.50 %) were observed for P. lanceolata extract. The extract of O. corniculata caused complete damage to the morphology of J2 via rupturing the cuticle of posterior, middle, and interior portion. In the pot experiment, M. incognita adversely affected growth shoot length (51.37%), root length (55.10%), fresh head weight (63.14%), and dry head weight (61.79%) by down-regulation of biochemical and epidermal traits compared to un-inoculated plants. However, the soils amended with botanicals especially O. corniculata recorded highest retardation of M. incognita infestation in cabbage roots, hence improved the growth and yield compared to the infected plants. The most beneficial effect denoted by O. corniculata at 100 g/pot on the infected cabbage plants associated with improving carotenoids (83%), chorophyll (117%), and nitrate reductase activity (79%) compared to stressed plants only. Also, O. corniculata at 100 g/pot maximally increased the number of stomata (130%), lengths (87%), and width (141%) of stomatal pore infected cabbage plants compared to the infected plants. These findings recommended the importance of O. corniculata as an eco-friendly organic phyto-nematicide that effectively restrict the damaging impacts of M. incognita on cabbage and may be other crops.

期刊论文 2024-09-01 DOI: 10.1007/s42729-024-01930-7 ISSN: 0718-9508

Plant-parasitic nematodes pose a significant threat to finger millet crops, potentially causing yield reduction of up to 70%. Extracts derived from finger millet varieties contain potent bioactive compounds that can mitigate nematode damage and promote plant growth. This study aimed at isolating and characterizing bioactive compounds from the finger millet varieties Ikhulule, Okhale-1, and U-15; evaluating the impact of Ikhulule and U-15 extracts on the mortality of the root lesion nematode Pratylenchus vandenbergae; assessing the growth promotion effects of Ikhulule and U-15 extracts on the finger millet variety Okhale-1; and determining the efficacy of these extracts in managing plant-parasitic nematodes under greenhouse conditions. Extracts were obtained from both leaves and roots and tested in vitro for nematode mortality and in vivo for growth promotion and nematode control. The results showed that finger millet extracts exhibited strong nematicidal properties in vitro, achieving a mortality rate of up to 98% against P. vandenbergae nematodes. Applying these extracts to finger millet shoots significantly reduced nematode populations in both soil and roots and decreased the reproductive factor to below one (1), indicating an effective nematode control. The study attributes the enhanced nematicidal effects of finger millet extracts to their bioactive compounds, particularly dodecanoic acid, phytol, 1,1,4a-trimethyl-6-decahydro naphthalene, 2,3-dihydro-benzofuran, 2-methoxy-4-vinylphenol and ethyl ester, and hexadecanoic acid. These findings suggest that finger millet-derived extracts offer a natural solution for nematode management and broader agronomic benefits, ultimately contributing to overall plant health and productivity.

期刊论文 2024-08-01 DOI: 10.1002/pei3.70006 ISSN: 2575-6265
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页