共检索到 13

This paper presents a method to predict the impact of underground tunnel construction on nearby piles using non-linear soil-pile-tunnel interaction. Two stage analysis method have been used considering Kerr foundation model. Greenfield ground settlements have been compared with site-specific instrumentation data of East-West Metro Project, Kolkata, India and results obtained were found to be in good agreement. It has also been observed that the Kerr foundation model considers soil spring over Pasternak's model and hence yields reduced pile deflection compared to Pasternak's model. Non-linear analysis considers non-linear stress-strain relationship and so yields more pile deflection than linear analysis under large deformation. Validation has been performed with case studies in published literature. Irrespective of end conditions, critical bending moment in pile develops at the tunnel centreline depth and at the fixed ends. Soil is a non-elastic material and due to its own shearing strength, the soil also absorbs some portion of the ground deformation before transferring that to the pile. So, consideration of non-linear Kerr model captures a realistic response of the pile. An accurate and cost-effective solution method of non-linear tunnel-soil-pile interaction model has been developed for easy application by practicing engineers using MATLAB software which is commonly available in most of the design.

期刊论文 2025-06-01 DOI: 10.1007/s10706-025-03209-9 ISSN: 0960-3182

Amid global warming, thaw settlement from permafrost degradation is a major cause of infrastructure damage in cold regions. Understanding the thaw consolidation behavior of frozen soil is crucial for the safe construction, operation, and maintenance of infrastructure in these areas. However, previous analytical studies have primarily focused on homogeneous frozen soil structures, neglecting the analysis of the effect of self-weight. This study develops a novel analytical model for thaw consolidation in layered frozen soil, considering self-weight. The model integrates heterogeneous soil consolidation dynamics with the moving boundary conditions resulting from thawing processes, and the corresponding transient solution is derived by applying the Stieltjes integral and Gauss error function. Based on this solution, the effects of soil heterogeneity, thaw consolidation, and self-weight were investigated. Results reveal that (1) soil heterogeneity in thaw-consolidation models can significantly affect the prediction of excess pore pressure; (2) excess water from thawing can lead to pore pressure accumulation and low consolidation ratio, which causes safety issues; (3) assumptions neglecting soil self-weight tend to underestimate pore pressures over 35 % and overestimate consolidation ratios over 40 %. This work provides a preliminary assessment tool for thaw-consolidation of heterogeneous frozen soils, which is important for engineering design in cold regions.

期刊论文 2025-03-01 DOI: 10.1016/j.compgeo.2024.107001 ISSN: 0266-352X

Consolidation and settlement of soft soil ground are the main problems encountered for geotechnical engineers, and drainage boundary conditions play a crucial role in consolidation analysis and settlement prediction. Despite some theoretical approaches that have been proposed incorporating some particular drainage boundary conditions, there remains a dearth of rigorous analytical solutions for multilayered soils that effectively capture various drainage boundary conditions. This study presents a novel approach where the spectral method is used to capture the impact that drainage boundary condition has on the consolidation of multilayered soil. The drainage boundary condition over time is considered, while the excess pore water pressure (EPWP) profile across different soil layers can be described as a single expression using matrix operations. This proposed method is then verified with field investigations where the varying drainage condition is captured and compared with other solutions. The results show that the consolidation behavior will be overestimated if the traditional boundary conditions are used and the proposed method can predict the consolidation of soil with greater accuracy and flexibility. EPWP and settlement at different depths can be estimated such that they agree better with the field data, and the study also indicates that there is a noticeable discrepancy in the predicted consolidation when the drainage boundary condition is not considered properly.

期刊论文 2025-01-01 DOI: 10.1007/978-981-97-8225-3_3 ISSN: 2366-2557

Permeable pipe piles accelerate the bearing capacity of the pile foundation by releasing the excess pore water pressure (EPWP) of the soil around the pile through appropriate openings in the pile body. This study couples the Material Point Method (MPM) and the Finite Element Method (FEM) to establish a full-process model of pile driving and consolidation of permeable piles, and proposes a continuous drainage boundary condition that can reflect the plugging effect of permeable holes. The correctness of the model and boundary conditions are verified by comparison with experiments, and then the effects of soil properties, opening characteristics, and boundary permeability on the accelerated consolidation effect of permeable piles are analyzed. The results show that: the permeable pile with a permeable area ratio greater than 50% and a local opening ratio greater than 5% can save more than 60% of the consolidation time compared to conventional piles; the proposed boundary conditions can accurately describe the permeability of the permeable hole under the influence of plugging; in addition, the calculation formulae for the accelerated consolidation effect of permeable piles and the variation of continuous drainage boundary interface parameters with permeable area ratio are given, which can provide references for engineering design.

期刊论文 2024-12-01 DOI: 10.1016/j.compgeo.2024.106720 ISSN: 0266-352X

In recent years, numerous studies highlighted the crucial role of the soil-structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the three-dimensional (3D) numerical analysis method, the influence of the SSI on the seismic response of high-rise steel frame-core wall (SFCW) structures situated on shallow-box foundations were investigated in this study. To further investigate the effects of the SSI and site conditions, three types of soil profiles-soft, medium, and hard-were considered, along with a fixed-foundation model. The results were compared in terms of the maximum lateral displacement, inter-story drift ratio (IDR), acceleration amplification coefficient, and tensile damage for the SFCW structure under different site conditions, with both fixed-base and shallow-box foundation configurations. The findings highlight that the site conditions significantly affected the seismic performance of the SFCW structure, particularly in the soft soil, which increased the lateral deflection and inter-story drift. Moreover, compared with non-pulse-like ground motion, pulse-like ground motion resulted in a higher acceleration amplification coefficient and greater structural response in the SFCW structure. The RC core wall-basement slab junction was a critical region of stress concentration that exhibited a high sensitivity to the site conditions. Additionally, the maximum IDRs showed a more significant variation at incidence angles between 20 and 30 degrees, with a more pronounced effect at a seismic input intensity of 0.3 g than at 0.2 g.

期刊论文 2024-11-01 DOI: 10.3390/buildings14113522

Accurate simulation of laboratory undrained and cyclic triaxial tests on granular materials using the Discrete Element Method (DEM) is a crucial concern. The evolution of shear bands and non-uniform stress distribution, affected by the membrane boundary condition, can significantly impact the mechanical behavior of samples. In this work, the flexible membrane is simulated by using the Finite Element Method coupled with DEM. In addition, we introduce a hydro-mechanical coupling scheme with a compressible fluid to reproduce the different undrained laboratory tests by using the membrane boundary. The evolution of pore pressure is computed incrementally based on the variation of volumetric strain inside the sample. The results of the membrane boundary condition are compared with more classical DEM simulations such as rigid wall and periodic boundaries. The comparison at different scales reveals many differences, such as the initial anisotropic value for a given preparation procedure, fabric evolution, volumetric strain and the formation of shear bands. Notably, the flexible boundary exhibits more benefits and better aligns with experimental data. As for the undrained condition, the results of the membrane condition are compared with experimental data of Toyoura sand and rigid wall boundary with constant volume. Finally, stress heterogeneity during undrained monotonic and cyclic conditions using the membrane boundary is highlighted.

期刊论文 2024-11-01 DOI: 10.1007/s10035-024-01462-y ISSN: 1434-5021

Particle morphology plays a crucial role in determining the mechanical behavior of granular materials. This paper focused on investigating the effects of boundary conditions on the triaxial mechanical properties of soil samples, with particular consideration given to the influence of particle shape. To achieve this, a numerical model was proposed, which couples the finite difference method (FDM) and the discrete element method (DEM) to simulate the behavior of a rubber membrane and soil particles, respectively. The particle morphology was accurately reconstructed using spherical harmonics (SH) analysis, and the shell cells in the FDM were utilized to construct the boundary modeling. Through a series of simulations, the macroscopic and microscopic mechanical responses of soil particles, both within and outside the shear band, were investigated. The obtained simulation results were then compared with those derived from the DEM simulation using a particle-based membrane. The research findings pertaining to the influence of boundary conditions and particle shape provide significant contributions to our understanding of granular material behavior. These findings offer valuable insights that can be applied in the design and analysis of geotechnical structures.

期刊论文 2024-08-01 DOI: 10.1061/IJGNAI.GMENG-9789 ISSN: 1532-3641

Permeability is a fundamental property of porous media. It quantifies the ease with which a fluid can flow under the effect of a pressure gradient in a network of connected pores. Porous materials can be natural, such as soil and rocks, or synthetic, such as a densified network of fibres or open-cell foams. The measurement of permeability is difficult and time-consuming in heterogeneous and anisotropic porous media; thus, a numerical approach based on the calculation of the tensor components on a 3D image of the material can be very advantageous. For this type of microstructure, it is important to perform calculations on large samples using boundary conditions that do not suppress the transverse flows that occur when flow is forced out of the principal directions. Since these are not necessarily known in complex media, the permeability determination method must not introduce bias by generating non-physical flows. A new finite element-based method proposed in this study allows us to solve very high-dimensional flow problems while limiting the biases associated with boundary conditions and the small size of the numerical samples addressed. This method includes a new boundary condition, full permeability tensor identification based on the multiscale homogenization approach, and an optimized solver to handle flow problems with a large number of degrees of freedom. The method is first validated against academic test cases and against the results of a recent permeability benchmark exercise. The results underline the suitability of the proposed approach for heterogeneous and anisotropic microstructures.

期刊论文 2024-06-01 DOI: 10.3390/ma17122873

The interface resistance during installation is crucial for the stability and safety of suction caisson in offshore geotechnical engineering, which is strongly affected by the penetration rate and soil-structure interface mechanical properties. This research conducts a series of clay-structure interface shear tests using modified direct simple shear device to fully study the mechanical behavior of clay-suction caisson interface. The effect of shear rate, over consolidation ratios (OCRs), interface boundary conditions, stress levels, and interface roughness were considered. Results show that as the OCR increases, the strength of both the clay and interface increase but show distinct patterns under constant volume (CV) and constant normal load (CNL) boundary condition. It was found that the interface strength is positively related to interface roughness and shear rate impact both the clay and corresponding interface strength. Under CNL conditions, the strength of normally consolidated (NC) clay decreases with rising shear rate, while the over consolidated (OC) clay demonstrate a opposite trend. In contrast, the effect of shear rate on interface behavior gets complicated owing to the combination of roughness, stress levels, and OCRs. Under CV conditions, the shear strength of clay and interface exhibits a logarithmic growth relationship with shear rates. The result of this work can provide a basis for interface resistance evaluation for suction caisson installation in clay.

期刊论文 2024-06-01 DOI: 10.1016/j.apor.2024.103998 ISSN: 0141-1187

Based on the modified simple direct shear device which can directly measure the interface pore pressure and interface shear displacement, a series of interface shear tests and corresponding pure clay shear tests were conducted at an undrained state in constant normal load (CNL) boundary conditions or equivalent undrained state in constant volume (CV) boundary conditions. The clay-structure interfaces, consisting of seabed clay and Speswhite kaolin clay with overconsolidation ratios (OCR) of 1 and 3, were tested at three shear rates, respec-tively V1 = 0.0002 mm/s, V2 = 0.001 mm/s, and V3 = 0.01 mm/s. The results demonstrated that the shear strength of the clay-structure interface is lower than that of pure clay, and this difference is more pronounced under CV boundary conditions. In CNL condition, though the pure clay strength decreases with increasing shear rate at OCR = 1 and increases with increasing shear rate at OCR = 3, the shear rate effect on clay-structure interface strength is not obvious. In CV condition, the strength of the interface with the normally consolidated (NC) and over consolidated (OC) clay increases approximately linearly with the shear rate on the semi -logarithmic scale. the shear rate parameter p is used to describe the growth rate of pure clay or clay-structure interface shear strength with a tenfold increase in shear rate. As for normally consolidated clay, in CV condi-tion, the corresponding shear rate parameter satisfies that p (with R1 roughness)> p (pure clay)> p (with R2 roughness). The rate parameter corresponding to NC seabed clay is significantly higher than the rate parameter corresponding to NC Speswhite kaolin clay. For OC clay, the shear rate parameter for interface strength is higher than that for pure clay, meeting with the relationship that p (with R1 roughness)> p (with R2 roughness)> p (pure clay).

期刊论文 2024-02-01 DOI: 10.1016/j.soildyn.2023.108389 ISSN: 0267-7261
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页