Brown carbon (BrC) is the ubiquitous part of the atmospheric organic carbon. It absorbs solar lights and greatly impacts the Earth's radiative balance. This study examines the spectral characteristics of BrC and its radiative effect in the Dhaka South (DS) site and Dhaka North (DN) site from July 2023 to January 2024 with a high-volume particulate matter sampler on quartz filters. Spectral characteristics such as absorption coefficient (babe,), mass absorption efficiency (MAE), absorption angstrom exponent (AAE), and refractive index (Kabs-x) were determined by using a UV -visible spectrophotometer, and fluorescence emission spectra were analyzed in different pH by the fluorescent spectrophotometer. The concentrations of BrC and black carbon (BC) were determined by an aethalometer. The mean concentrations of BrC and BC in Dhaka city were 18.63 +/- 3.84 mu g 111-3 and 17.93 +/- 3.82 pg M-3, respectively. The AAE values lie in the range of 3.20-4.01 (DN) and 3.27-4.53 (DS), and the radiative forcing efficiency of BrC was obtained at 4.43 +/- 1.02 W g-1 in DN and 3.93 +/- 0.74 W g-1 in DS, indicating the presence of highly light-absorbing BrC in these locations. Average MAE and Kabs_k values were 1.55 +/- 0.45 m2g1 and 0.044 + 0.013, respectively, in DS, alternatively 1.84 +/- 0.59 m2g1 and 0.052 +/- 0.016 in DN. The fluorescence excitation-emission spectra confirmed the presence of a polyconjugate cyclic ring with multifunctional groups in the structure of BrC. Light absorption properties and fluorescence emission spectra were varied with the change of pH. As the pH increased (2-8), the AAE value decreased and MAEB,c_365 increased due to protonation or deprotonation. This study highlights that the BrC has a significant impact on the air quality as well as the Earth's radiative balance, emphasizing its strong light-absorbing properties and variability with environmental factors.
Carbonaceous aerosol components (CACs) significantly influence global radiative forcing and human health. We developed a simultaneous inversion algorithm for four CACs: black carbon (BC), brown carbon (BrC), watersoluble organic matter (WSOM), and water-insoluble organic matter (WIOM), considering their distinct optical, solubility, and hygroscopicity properties. Using AERONET data, we inverted the global concentrations of these components for 2022. We observed that the mass concentration of black carbon (BC) is highest in the South Asian region, with an annual average of 4.74 mg m(-2). High values of brown carbon (BrC) correspond well with regions and seasons of biomass burning, with the annual average reaching 9.03 mg m(-2) at sites in Central and West Africa. Water-insoluble organic matter (WIOM) is the most predominant component in carbonaceous aerosols, with an annual average concentration as high as 53.11 mg m(-2) at the Dhaka_University site in Eastern South Asia. Additionally, the study also points out a significant correlation between the dominant components of carbonaceous aerosols and their seasonal variations with local emissions. Furthermore, the validation of optical parameters against official AERONET products demonstrates a good correlation.
Aerosols significantly impact the Earth's climate, affecting the amount of solar radiation that reaches its surface and directly impacting global warming. A large uncertainty regarding the impacts of aerosols on climate is related to Brown Carbon (BrC), an organic constituent emitted due to the incomplete combustion of light-absorbing biomass. This study aimed to define and quantify Black Carbon (BC) and Brown Carbon (BrC) absorptions using in-situ measurements from a campaign carried out in the Pantanal Mato Grosso between 2017 and 2019. The models were adjusted to calculate the Radiative Forcing (RF). By examining the RF perturbations caused by these two components, it was possible to determine the radiative balance perturbations at the upper atmospheric layer (top) and the surface. This study presented innovative findings that may help improve the understanding of the energy balance in the Pantanal region while allowing more accurate estimates of the contribution of aerosols to climate change models.
Atmospheric Brown Carbon (BrC) with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing. Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality, human health and climate change. This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1 degrees x 0.1 degrees, based on compiled emission factors and detailed activity data. The primary BrC emission in China was about 593 Gg (500-735 Gg as interquartile range) in 2016, contributing to 7% (5%-8%) of a previously estimated global total BrC emission. Residential fuel combustion was the largest source of primary BrC in China, with the contribution of 67% as the national average but ranging from 25% to 99% among different provincial regions. Significant spatial disparities were also observed in the relative shares of different fuel types. Coal combustion contribution varied from 8% to 99% across different regions. Heilongjiang and North China Plain had high emissions of primary BrC. Generally, on the national scale, spatial distribution of BrC emission density per area was aligned with the population distribution. Primary BrC emission from combustion sources in China have been declined since a peak of similar to 1300 Gg in 1980, but the temporal trends were distinct in different sectors. The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of human health protection and climate change.
Light-absorbing organic carbon (i.e., brown carbon, BrC) significantly contributes to light absorption and radiative forcing in the atmospheric particles. However, the secondary formation of BrC and optical properties of secondary BrC are poorly understood. In this study, we analyzed and evaluated the light absorption and environmental effects of BrC and secondary BrC from July 1st to 31st, 2022 (summer) and January 20th to February 20th, 2023 (winter) in Chongqing. BrC and secondary BrC light absorption were estimated via a seven- wavelength aethalometer and the statistical approach. The average values of secondary BrC light absorption (Abs(BrC,sec,lambda)) accounted for 46.2-56.5% of Abs(BrC). Abs(BrC,370) and Abs(BrC,sec,370) were significantly higher during winter (26.2 +/- 13.2 and 9.1 +/- 5.2 Mm(-1) respectively) than that during summer (7.2 +/- 4.1 and 5.2 +/- 3.5 Mm(-1) respectively) (p < 0.001), suggesting secondary formation played an essential role in BrC. A diurnal cycle of Abs(BrC,sec,370) was explained by the photobleaching of light-absorbing chromophores under the oxidizing conditions in the daytime, and the formation of chromophores via aqueous reactions with NH(4)(+ )and NO(x )after sunset during winter. PSCF analysis showed that transport of anthropogenic emissions from the northeastern and southeastern areas of Chongqing was the important source of the secondary BrC in PP during winter. During winter, the average values of SFEBrC and SFEBrC,sec were 31.9 and 27.4 W g(-1) lower than that during summer (64.7 and 44.5 W g(-1)), respectively. In contrast, J[NO2] values of SFEBrC and SFEBrC,sec decreased by 23.3% and 8.7% during winter higher than that during summer (19.9% and 5.6%), indicating that BrC and secondary BrC cause substantial radiative effects and atmospheric photochemistry. Overall, this study is helpful in understanding the characterization and secondary formation of BrC and accurately evaluating the environmental effects of BrC in Chongqing.
The Black carbon (BC) and Brown carbon (BrC) concentration has been measured over Srinagar (Garhwal) in central Himalayas during October 2020 to September 2021 periods. The average BC mass was 2.59 +/- 1.96 mu g m- 3 and its absorption coefficients were abundant at shorter wavelength. BC seasonal variation exhibited a significant variability, with highest during winter (4.54 +/- 2.64 mu g m- 3) followed by pre-monsoon (2.69 +/- 2.04 mu g m- 3) and post-monsoon (1.93 +/- 0.91 mu g m- 3) while lowest was observed in the monsoon (1.05 +/- 0.54 mu g m- 3). Relatively high contribution of total spectral light absorption coefficient (Abs lambda) was observed (75.94 Mm-1) at 370 nm than longer wavelength (16.86 Mm-1) at 950 nm. The BrC contribution was higher at 370 nm (32.50 Mm-1) to the total babs (lambda), while at higher wavelengths it has extensively decreased (2.54 Mm-1 at 660 nm). Seasonally, the absorption coefficient of BC and BrC was greater in winter (83.99 and 68.37 Mm-1) while lowest in monsoon (19.38 and 9.27 Mm-1), respectively. The babs BrC/babs (t) ratio revealed higher contribution of BrC in winters. The secondary brown carbon (BrCsec) and primary brown carbon (BrCpri) contributed 43.16 % and 56.88 % towards the total BrC Abs (lambda) at 370 nm with higher in winter and lowest in monsoon, respectively. BrCsec and BrCprim has shown higher contribution in evening (18.00-20.00 h) and in morning (09.00-11.00 h) hours. The average radiative forcing (RF) of BC was 36.11 +/- 6.99 Wm-2, 2.19 +/- 1.22 Wm-2 and -33.92 +/- 5.96 Wm-2 at the atmosphere (ATM), Top of the Atmosphere (TOA), and at the Surface (SUR), respectively.
Brown carbon (BrC), known as light-absorbing organic aerosol in the near-ultraviolet (UV) and short visible region, plays a significant role in the global and regional climate change. A detailed understanding of the spectral optical properties of BrC is beneficial for reducing the uncertainty in radiative forcing calculation. In this work, the spectral properties of primary BrC were investigated by using a four-wavelength broadband cavity-enhanced albedometer with central wavelengths at 365, 405, 532 and 660 nm. The BrC samples were generated by the pyrolysis of three types of wood. During the pyrolysis process, the measured average single scattering albedo (SSA) at 365 nm was about 0.66 to 0.86, where the average absorption angstrom ngstrom exponent (AAE) was between 5.8 and 7.8, and the average extinction angstrom ngstrom exponent (EAE) was within 2.1 to 3.5. The full spectral measurement of SSA (300-700 nm) was realized by an optical retrieval method and the retrieved SSA spectrum was directly applied to evaluate aerosol direct radiative forcing (DRF) efficiency. The DRF efficiency over ground of various primary BrC emissions increased from 5.3 % to 68 % as compared to the non-absorbing organic aerosol assumption. A decrease of about 35 % in SSA would cause the DRF efficiency over ground to change from cooling effect to warming effect (from -0.33 W/m2 to +0.15 W/m2) in the near-UV band (365-405 nm). The DRF efficiency over ground of strongly absorptive primary BrC (lower SSA) contributed 66 % more than weakly absorptive primary BrC (higher SSA). These findings proved the importance of broadband spectral properties of BrC, which are substantial for radiative forcing evaluation of BrC and should be considered in global climate models.
Biomass burning is a major source of Brown Carbon (BrC), strongly contributing to radiative forcing. In urban areas of the climate-sensitive Southeastern European region, where strong emissions from residential wood burning (RWB) are reported, radiative impacts of carbonaceous aerosols remain largely unknown. This study examines the absorption properties of water-and methanol-soluble organic carbon (WSOC, MeS_OC) in a city (Ioannina, Greece) heavily im-pacted by RWB. Measurements were performed during winter (December 2019 - February 2020) and summer (July - August 2019) periods, characterized by RWB and photochemical processing of organic aerosol (OA), respectively. PM2.5 filter extracts were analyzed spectrophotometrically for water-and methanol-soluble BrC (WS_BrC, MeS_BrC) absorption. WSOC concentrations were quantified using TOC analysis, while those of MeS_OC were determined using a newly developed direct quantification protocol, applied for the first time to an extended series of ambient sam-ples. The direct method led to a mean MeS_OC/OC of 0.68 and a more accurate subsequent estimation of absorption efficiencies. The mean winter WS_BrC and MeS_BrC absorptions at 365 nm were 13.9 Mm-1 and 21.9 Mm-1, respec-tively, suggesting an important fraction of water-insoluble OA. Mean winter WS_BrC and MeS_BrC absorptions were over 10 times those observed in summer. MeS_OC was more absorptive than WSOC in winter (mean mass absorption efficiencies - MAE365: 1.81 vs 1.15 m2 gC-1) and especially in summer (MAE: 1.12 vs 0.27 m2 gC-1) due to photo -dissociation and volatilization of BrC chromophores. The winter radiative forcing (RF) of WS_BrC and MeS_BrC rela-tive to elemental carbon (EC) was estimated at 8.7 % and 16.7 %, respectively, in the 300-2500 nm band. However, those values increased to 48.5 % and 60.2 % at 300-400 nm, indicating that, under intense RWB, BrC forcing becomes comparable to that of soot. The results highlight the consideration of urban BrC emissions in radiative transfer models, as a considerable climate forcing factor.
Black carbon (BC), primary brown carbon (BrCpri), and secondary brown carbon (BrCsec) are important light-absorbing aerosol. BC and BrC from the surrounding area can reach the Tibetan Plateau (TP) and influence climate change and glacial melting. Here, we presented a study of the light absorption, radiative forcing, and potential source areas of BC and BrC over the northeastern, central, and southwestern TP. The higher light absorption was observed in the northeastern and southwestern sites compared to the central TP site. The major carbonaceous light-absorbing was attributed to BC with the percentages of 65%, 56%, and 82% in Ngari, Qinghai Lake, and Beiluhe, respectively. The heighten contribution of BrCsec to total light absorption indicated the importance of BrCsec in the TP, especially in the northeastern and southwestern areas. The BrCsec radiative forcings relative to BC were much higher than those of BrCpri. The potential BC and BrCpri source distributions were obtained.
The light absorption of brown carbon (BrC) makes a significant contribution to aerosol light absorption (Abs) and affects the radiative forcing. In this study, we analyzed and evaluated the light absorption and radiative forcing of BrC samples collected from December 2016 to January 2017 in Chongqing and Chengdu in the Sichuan Basin of Southwest China. Based on a two-component model, we estimated that BrC light absorption at 405 nm was 19.9 +/- 17.1 Mm(-1) and 19.2 = 12.3 Mm(-1) in Chongqing and Chengdu, contributing 19.0 +/- 5.0% and 17.8 3.7% to Abs respectively. Higher Abs(405,BrC), MAE(405.Br)(C), and AAE(405-980) values were observed during the pollution period over the dean period in both cities. The major sources of BrC were biomass burning (BB) and secondary organic aerosol in Chongqing, and coal combustion (CC) and secondary organic aerosol in Chengdu. During the pollution period, aged BrC formed from anthropogenic precursors via its aqueous reactions with NH4+ and NOx had impacts on BrC absorption in both cities. BB led to higher AbS(405,BrC), MAE(405,BrC), and AAE(405-980) values in Chongqing than Chengdu during the pollution period. The fractional contribution of radiation absorbed by BrC relative to BC in the wavelengths of 405-445 nm was 60.2 +/- 17.0% and 64.2 +/- 11.6% in Chongqing and Chengdu, significantly higher than that in the range 01405-980 nm (262 +/- 6.7% and 27.7 +/- 4.6% respectively) (p 0.001). This study is useful for understanding the characterization, sources, and impacts of BrC in the Sichuan Basin. (C) 2020 Elsevier B.V. All rights reserved.