共检索到 3

Bryophytes play important roles in high altitude-latitude ecosystem owing to their extensive geographical coverage. Particularly, the insulating effect prevent permafrost degradation with the rapidly climate warming on the QTP. However, few studies investigated how Bryophytes will react to environmental change at the global scale. In this study, a maximum entropy (Maxent) model was utilized to predict the potential impact of climate change on the distribution of Bryophytes on the QTP. Predictions were based on the under historical (years of 1970-2000) and future climate scenarios (years of 2041-2060 and 2081-2100) using the average climate data of nine global climate models (GCMs) for shared socio-economic pathways (SSP2-4.5) of CMIP6 and other environmental variables. In addition, the key environmental factors affecting the habitat distribution and range shifts of Bryophytes were examined. The results revealed that Bryophytes occupied an area of approximately 179.97 (+/- 0.87) x 10(4 )km(2), 77 (+/- 0.44)% of the total areal extent of QTP in the past. Niche suitability of the Bryophytes was dominated by soil moisture, ultraviolet-B radiation seasonality, temperature seasonality and precipitation of the coldest quarter. Under future climate scenarios, the occupied area increased continuously towards the relatively higher elevation regions. Moreover, permafrost regions would become the buffer zone for the range shifts of niches and covers of Bryophytes on the QTP. This paper will improve our understanding of vegetable potential impact on the permafrost climate feedback.

期刊论文 2022-01-01 DOI: http://dx.doi.org/10.1007/s12665-021-10122-w ISSN: 1866-6280

Bryophytes play important roles in high altitude-latitude ecosystem owing to their extensive geographical coverage. Particularly, the insulating effect prevent permafrost degradation with the rapidly climate warming on the QTP. However, few studies investigated how Bryophytes will react to environmental change at the global scale. In this study, a maximum entropy (Maxent) model was utilized to predict the potential impact of climate change on the distribution of Bryophytes on the QTP. Predictions were based on the under historical (years of 1970-2000) and future climate scenarios (years of 2041-2060 and 2081-2100) using the average climate data of nine global climate models (GCMs) for shared socio-economic pathways (SSP2-4.5) of CMIP6 and other environmental variables. In addition, the key environmental factors affecting the habitat distribution and range shifts of Bryophytes were examined. The results revealed that Bryophytes occupied an area of approximately 179.97 (+/- 0.87) x 10(4 )km(2), 77 (+/- 0.44)% of the total areal extent of QTP in the past. Niche suitability of the Bryophytes was dominated by soil moisture, ultraviolet-B radiation seasonality, temperature seasonality and precipitation of the coldest quarter. Under future climate scenarios, the occupied area increased continuously towards the relatively higher elevation regions. Moreover, permafrost regions would become the buffer zone for the range shifts of niches and covers of Bryophytes on the QTP. This paper will improve our understanding of vegetable potential impact on the permafrost climate feedback.

期刊论文 2022-01-01 DOI: 10.1007/s12665-021-10122-w ISSN: 1866-6280

Previous studies in tundra ecology provide evidence for sensitivity of the vegetation-soil complex to climate. Short-term experiments (less than or equal to10 yr) suggest that climate change may have a decade-scale effect on soil moisture, decomposition and nutrient availability, plant phenology, and plant growth. In contrast, there exists little evidence to confirm or refute the role of climate in structuring tundra vegetation over longer time scales (10 to 1000 yr). This study accordingly examines similar to1500 yr in the stratigraphy of two permafrost sediment cores from a High Arctic, polygon-patterned, graminoid-moss tundra. Present-day bryophyte-environment relationships are quantified, and the radiocarbon-dated macrofossil record of bryophytes is used to reconstruct past changes in soil moisture. The paleoecological record is characterized by pronounced variability during polygon development. As the hydrology of tundra polygons is controlled by known climatic and geomorphologic mechanisms, the recurrent development of polygon vegetation (cf. hydrologic change) is compared to an independent paleoclimatic proxy for net radiation (R-n). Based on this comparison, the vegetation provides support for a pronounced shift to colder and wetter conditions during the Little Ice Age (similar to300-465 yr BP), though the long-term response to past climate change is otherwise equivocal. We suggest accordingly that autogenic geomorphologic-vegetation processes may have been generally more important than climate in the long-term development of the polygon-patterned wetland examined. A framework for such processes is presented. We caution that previous research to simulate and describe the effects of climate warming might not have properly accounted for the dynamic role of geomorphology in regulating tundra microclimate.

期刊论文 2004-04-01 DOI: 10.1890/02-0614 ISSN: 0012-9658
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页