On February 6, 2023, two devastating seismic events, the Kahramanmaras, earthquakes, struck the Eastern Anatolian Fault Line (EAF) at 9-h intervals. The first earthquake, with a moment magnitude (Mw) of 7.7, struck the Pazarc & imath;k district, followed by a second earthquake with a moment magnitude (Mw) of 7.6 in the Elbistan district, both within the Kahramanmaras, province. These dual earthquakes directly impacted eleven provinces in Eastern and Southeastern Anatolia leading to significant loss of life and extensive damage to property and infrastructure. This study focuses on revealing the main parameters causing to the collapse of reinforced concrete (RC) buildings by examining their compliance with legislation and earthquake codes in force at the time of construction. For this purpose, detailed examinations such as field observations, collection of general information and official documents about the buildings, determination of material properties and soil characteristics, and three-dimensional finite element (FE) analysis of 400 totally collapsed RC buildings in the Kahramanmaras,, Ad & imath;yaman, Hatay, and Gaziantep provinces, which were among the cities affected by the Kahramanmaras, earthquakes were performed. The findings of this study contribute to a better understanding of the seismic deficiencies of buildings in earthquake-prone regions and provide information on which strategies to develop to increase the resilience of buildings with similar characteristics in other earthquake regions against future seismic events. Considering that the time from the beginning of the construction of the building until its completion consists of several stages, it can be seen that 43.58 % of the errors that cause damage and collapse of the buildings in this study are made in the construction stage, 25.57 % in the FE analysis stage, 24.77 % in the license stage, and 6.07 % in the after construction stage. Thanks to the development process of earthquake codes, regulations in building inspection practices and easier access to quality materials have greatly reduced the damage and collapse of buildings constructed in recent years.
This study quantifies the seismic fragility assessment of shallow-founded buildings in liquefiable and treated soils, enhanced by drainage and densification, considering both short-and long-term behaviors. A conceptual framework is proposed for developing seismic fragility curves based on engineering demand parameters (EDPs) of buildings subjected to various earthquake magnitudes. The framework for establishing seismic fragility curves involves three essential steps. First, nonlinear dynamic analyses of soil-building systems are performed to assess both the short-term response, which occurs immediately following an earthquake, and the longterm response, when excess pore water pressure completely dissipates, and generate a dataset of building settlements. The seismic responses are compared in terms of excess pore water pressure buildup, immediate and residual ground deformation, and building settlement to explore the dynamic mechanisms of soil-building systems and evaluate the performance of enhanced drainage and densification over short-and long-term periods. Second, 38 commonly used and newly proposed intensity measures (IMs) of ground motions (GMs) are comprehensively evaluated using five statistical measures, such as correlation, efficiency, practicality, proficiency, and sufficiency, to identify optimal IMs of GMs. Third, fragility curves are developed to quantify probability of exceeding various capacity limit states, based on structural damage observed in Taiwan, for both liquefaction-induced immediate and residual settlements of buildings under different levels of IMs. Overall, this study proposes a rapid and straightforward probabilistic assessment approach for buildings in liquefiable soils, along with remedial countermeasures to enhance seismic resilience.
This study evaluates the impact of varying bedrock depths on local site amplification factors and their consequent influence on the vulnerability of buildings under seismic actions. An index-based methodology is implemented to analyze the seismic vulnerability of old masonry buildings in the historic center of Galata, & Idot;stanbul. As part of a site-specific analysis, soil models are developed to replicate a dipping bedrock at six different depths varying between 5 and 30 m beneath the ground surface. Consequently, potential damage scenarios are generated employing a seismic attenuation relation and damage distributions are compared for the cases with/without amplification effects. The findings point out that, the structural response undergoes the greatest amplification at a bedrock depth of 20 m, exceeding 1.6 and attaining its maximum value of 2.89 at the structural period of 0.22 s. The maximum shift in damage grades occurs for buildings with natural periods between 0.16 and 0.20 s on 15 m bedrock depth, whereas, for longer periods, the greatest increase occurs at 20 m bedrock depth compared to the scenarios without site amplification. As a result, this study emphasizes the significance of site-specific conditions that might amplify structural response and consequently, increase the seismic damage level in assessing the vulnerability of built heritage. By integrating geo-hazard-based evaluation into the large-scale seismic assessments, this study offers a framework for more accurate damage forecasting and highlights the need to include local site amplification effects in seismic risk mitigation plans, enhancing strategies for preserving built heritage.
On February 6, 2023, two major earthquakes with magnitudes Mw = 7.7 and Mw = 7.6 struck southeastern Turkiye, causing catastrophic damage and loss of life across 11 provinces, including Malatya. This study focuses on documenting the geotechnical observations and structural damage in Dogansehir, one of the hardest-hit districts not only in Malatya but in the entire affected region. An overview of the-region's tectonic and geological background is presented, followed by an analysis of ground motion data specific to Malatya. A detailed examination of seismic data from stations near Dogansehir was provided to better understand the seismic demands during the earthquakes. The paper then provides insights into the geotechnical conditions, building characteristics, and a damage ratio map of Dogansehir. The influence of local tectonics and geology on the observed damage is analyzed, alongside an evaluation of the seismic performance of masonry and reinforced concrete structures. Dogansehir, located near the epicenters of the Kahramanmaras earthquakes, suffered major structural damage. This was due to the surface rupture occurring near the settlement areas, the establishment of the district centre on the alluvial soil layer and the deficiencies/errors in the building systems. Building settlements on or near active fault zones, as well as on soft soil, leads to serious consequences and should be avoided or require special precautions.
Using ecological materials such as raw earth represents an ancestral building practice that has been revisited for modern construction, thanks to its availability, low cost, environmental friendliness, and thermal properties, which offer optimal insulation and thermal comfort. This article explores the development of a new composite based on raw earth reinforced with 15% mussel shells, a by-product of the aquaculture industry, combined with two stabilizers: lime or cement (3%, 5% and 8%), in distinct formulations. This study aims to characterize the chemical and mineralogical composition of the soil and mussel shells and the thermal and mechanical properties of the composites. The results indicate that the gradual addition of lime to the soil-mussel shell mixture decreases dry density, which reduces dry mechanical strength due to increased porosity but enhances thermal properties. Conversely, incorporating cement into the soil-mussel shell mixture improves significantly mechanical properties while limiting the thermal performances.
Recent earthquakes have highlighted the importance of earthquake ground motion recordings and rapid visual inspections (RVSs) of damaged buildings to assess the earthquake impact on the building inventory, prepare recovery plans, and provide valuable findings that could contribute to the preparedness ahead of future earthquake events. The effect of strong earthquake ground motions on the building stock is controlled by a range of interconnected factors. These include the intensity of ground motion, the effects of local soil conditions, the structural design, reinforcement and material properties, as well as the quality control during construction, among others. However, it is important to acknowledge that the earthquake ground motions recorded are dependent on local variables, such as the soil type and potential operational issues. Such an example is the major M6.4 earthquake in Durr & euml;s, Albania, in November 2019, the most significant in the region in the past four decades. The strong ground motion recorded at the sole Durr & euml;s accelerometric station was interrupted due to a power outage. As a result, the recorded accelerograms (with a PGA of 0.192 g) require thorough analysis and evaluation before they can be reliably used in assessing damage of existing structures. The current paper presents a framework for evaluating the incomplete record to ensure that the strong ground motion pulse is captured in the acceleration series. The latter is achieved by analyzing and comparing the amplitude and frequency contents of the recorded motion against ground motion accelerograms from areas with similar seismotectonic features. Ground motion recordings from stations that have soil conditions resembling those of the Durr & euml;s region are used, ensuring that the analysis is relevant to the specific study area. Next, the disrupted ground motion recording is evaluated by comparing the damage of post-earthquake inspected buildings with the results of advanced numerical analysis for the case of a typical 12-storey and a 5-storey building. The effects of pounding, the presence of infills, soil-structure interaction (SSI), and multiple failure modes are taken into consideration. Results indicate that despite the incomplete data, the seismic record retains the essential strong ground motion features and can be used for further studies. The numerical simulations aligned well with observed damage from rapid visual inspections, verifying the record's integrity. The findings show that factors such as soil-structure interaction, infill panels, and pounding effects significantly influenced building performance. The study concludes that the Durr & euml;s record, though incomplete, is reliable for seismic assessment and can aid future risk studies in the region.
The influence of surface Rayleigh waves (SRWs) on the seismic behavior of three archetype nonconforming reinforced concrete (RC) buildings including weak first story with four, six, and eight stories when subjected to earthquake ground motions (EQGMs) recorded during the strong September 19, 2017 Mw7.1 earthquake in Mexico City, is discussed in this paper. For this purpose, ground acceleration time histories corresponding to the retrograde and prograde components of SRWs were extracted from EQGMs collected at the accelerographic stations placed at the transition and soft soil sites. It was found that the SWRs contribute to about 50% of the median maximum IDR demand (IDRmax) triggered by the as-recorded earthquake ground motions at the ground level of the four- and six-story building models, while their contribution is about 30% of IDRmax for the eight-story building model. It should be noted that that SRWs induce median IDRmax demands to the four-story building model larger than about 11% and 49% than those to the six- and eight-story models, respectively, for soft soil sites. Moreover, the prograde component can trigger IDRmax demands in the four-story building model larger than 73% and 45% than those for the six- and eight-story models, respectively, for the transition sites. Particularly, it was shown that SRWs induce median IDRmax demands in excess of 0.35% at the first level of the archetype building models, which is associated to the light cracking damage state of nonductile RC columns, and even in excess of IDRmax of 0.71% associated to the severe cracking damage state when the record-to-record variability is considered in the IDRmax demand (i.e. the 84th percentile of IDRmax). Although the earthquake ground motion component of the surface Rayleigh waves was negligible in the median IDRmax, this study showed that the effect of the directionality of IDRmax is important for the CH84 station, where significant polarity of spectral ordinates was identified in previous studies.
This paper addresses the issue of crack expansion in adjacent buildings caused by foundation pit construction and develops a predictive model using the response surface method. Nine factors, including the distance between the foundation pit and the building, soil elastic modulus, and density, were selected as independent variables, with the crack propagation area as the dependent variable. An orthogonal test of 32 conditions was conducted, and crack propagation was analyzed using the FEM-XFEM model. Results indicate that soil elastic modulus, Poisson's ratio, and distance between the pit and building significantly impact crack propagation. A predictive model was developed through ridge regression and validated with additional test conditions. Single-factor analysis showed that elastic modulus and Poisson's ratio of the silty clay layer, elastic modulus of sandy soil, and pit distance have near-linear effects on crack propagation. In contrast, cohesion, density, and Poisson's ratio of sandy soil exhibited extremum points, with certain factors showing high sensitivity in specific ranges. This study provides theoretical guidance for mitigating crack propagation in adjacent buildings during excavation.
On 8 September 2023, Morocco was subjected to a significant seismic event. The earthquake occurred at 11:11 PM with a magnitude of Mw 6.8-7.2 in the province of Al Haouz. The epicenter of the earthquake was located at 30.9896 North; 8.4140 West, in the rural commune of Ighil, province of Al Haouz, Marrakech-Safi region. The Al Haouz earthquake had a significant impact on buildings, particularly in five provinces (Al Haouz, Chichaoua, Marrakech, Ouarzazate and Taroudant). The earthquake caused significant damage and loss of life in the affected regions, with a total of 69,674 buildings were damaged, 47,378 were partially destroyed, and 22,296 were totally destroyed. An analysis was conducted to assess the damage to reinforced concrete buildings in each of the two regions namely Al Haouz and Taroudant. The results indicated that the main causes of the observed damage were attributable to the nature of the soil, the short columns, soft story, the lack of sufficient reinforcement, and the construction materials used. An evaluation was conducted to assess compliance with Moroccan seismic regulations (RPS 2011) and identify deficiencies requiring revisions to the standard. This assessment also involved a comparison with other international seismic regulations, such as those in China and Eurocode 8, to examine best practices and learn valuable lessons. This comparative approach aims to enhance local standards by incorporating proven approaches to improving the seismic resistance of structures.
Nuclear facility sites built on soft deposits often adopt a combined piled cushion raft foundation (CPCRF) to enhance bearing capacity. However, separation and slip at the raft-bottom interface is inevitable in refined seismic simulations of weakly anchored nuclear island buildings (NIBs). Multiple factors related to both the structure and foundation influence the interface behavior. To address this, a structure-interface-soil nonlinear interaction model was developed, incorporating interfacial discontinuity characteristics, tri-directional wave inputs, and a stable semi-unbounded condition. The validity of the wave-field simulation method and the interface model were confirmed through theoretical comparisons. Using the AP1000 NIB at a specific CPCRF site as an example, the practicability of the model was validated, and key behavioral patterns were identified. In the static-seismic process, correlations between interface behavior, pile damage, and structural vibration were quantitatively elucidated. When seismic intensity exceeded design limits, the minimum instantaneous grounding ratio decreased rapidly. Structural vertical acceleration nearly doubled, and the frequency band of peak horizontal vibration shifted to higher frequencies. Interface behavior strongly correlated with slip stability and pile body damage. These findings indicate that interfacial discontinuities at the raft's bottom pose safety risks warranting further investigation.