Carbonaceous particles are an important radiative forcing agent in the atmosphere, with large temporal and spatial variations in their concentrations and compositions, especially in remote regions. This study reported the delta C-14 and delta C-13 of total carbon (TC) and water-insoluble particulate carbon (IPC) of the total suspended particles (TSP) and PM2.5 at a remote site of the eastern Tibetan Plateau (TP), a region that is influenced by heavy air pollution from Southwest China. The average organic carbon and elemental carbon concentrations of TSP samples in this study were 3.20 +/- 2.38 mu g m(-3) and 0.68 +/- 0.67 mu g m(-3), respectively, with low and high values in summer and winter, respectively. The fossil fuel contributions of TC in TSP and PM2.5 samples were 18.91 +/- 7.22% and 23.13 +/- 12.52%, respectively, both of which were far lower than that in Southwest China, indicating the importance of non-fossil contributions from local sources. The delta C-13 of TC in TSP samples of the study site was -27.06 +/- 0.96 parts per thousand, which is between the values of long-range transported sources (e.g., Southwest China) and local biomass combustion emissions. Therefore, despite the contribution from the long-range transport of particles, aerosols emitted from local biomass combustion also have an important influence on carbonaceous particles at the study site. The findings of this work can be applied to other remote sites on the eastern TP and should be considered in related research in the future.
Carbonaceous particles are an important radiative forcing agent in the atmosphere, with large temporal and spatial variations in their concentrations and compositions, especially in remote regions. This study reported the delta C-14 and delta C-13 of total carbon (TC) and water-insoluble particulate carbon (IPC) of the total suspended particles (TSP) and PM2.5 at a remote site of the eastern Tibetan Plateau (TP), a region that is influenced by heavy air pollution from Southwest China. The average organic carbon and elemental carbon concentrations of TSP samples in this study were 3.20 +/- 2.38 mu g m(-3) and 0.68 +/- 0.67 mu g m(-3), respectively, with low and high values in summer and winter, respectively. The fossil fuel contributions of TC in TSP and PM2.5 samples were 18.91 +/- 7.22% and 23.13 +/- 12.52%, respectively, both of which were far lower than that in Southwest China, indicating the importance of non-fossil contributions from local sources. The delta C-13 of TC in TSP samples of the study site was -27.06 +/- 0.96 parts per thousand, which is between the values of long-range transported sources (e.g., Southwest China) and local biomass combustion emissions. Therefore, despite the contribution from the long-range transport of particles, aerosols emitted from local biomass combustion also have an important influence on carbonaceous particles at the study site. The findings of this work can be applied to other remote sites on the eastern TP and should be considered in related research in the future.
Permafrost-affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, C-13 solid-phase nuclear magnetic resonance (C-13-NMR) spectroscopy, and C-14 analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2kgSOCm(-3), with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral-associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25kgOC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10kgOC per square meter is present as presumably more stable, mineral-associated OC. Significant amounts of the easily degradable, carbohydrate-rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer.
Cryosols contain roughly 1700 Gt of Soil organic carbon (SOC) roughly double the carbon content of the atmosphere. As global temperature rises and permafrost thaws, this carbon reservoir becomes vulnerable to microbial decomposition, resulting in greenhouse gas emissions that will amplify anthropogenic warming. Improving our understanding of carbon dynamics in thawing permafrost requires more data on carbon and nitrogen content, soil physical and chemical properties and substrate quality in cryosols. We analyzed five permafrost cores obtained from the North Slope of Alaska during the summer of 2009. The relationship between SOC and soil bulk density can be adequately represented by a logarithmic function. Gas fluxes at -5 degrees C and -5 degrees C were measured to calculate the temperature response quotient (Q(10)). Q(10) and the respiration per unit soil C were higher in permafrost-affected soils than that in the active layer, suggesting that decomposition and heterotrophic respiration in ciyosols may contribute more to global warming. (C) 2014 Published by Elsevier B.V.