共检索到 751

Conventional materials necessitate a layer-by-layer rolling or tamping process for subgrade backfill projects, which hampers their utility in confined spaces and environments where compaction is challenging. To address this issue, a self-compacting poured solidified mucky soil was prepared. To assess the suitability of this innovative material for subgrade, a suite of performance including flowability, bleeding rate, setting time, unconfined compressive strength (UCS), and deformation modulus were employed as evaluation criteria. The workability and mechanical properties of poured solidified mucky soil were compared. The durability and solidification mechanism were investigated. The results demonstrate that the 28-day UCS of poured solidified mucky soil with 20% curing agent content reaches 2.54 MPa. The increase of organic matter content is not conducive to the solidification process. When the curing temperature is 20 degrees C, the 28-day UCS of the poured solidified mucky soil with curing agent content not less than 12% is greater than 0.8 MPa. The three-dimensional network structure formed with calcium silicate hydrate, calcium aluminate hydrate, and ettringite is the main source of strength formation. The recommended mud moisture content is not exceed 85%, the curing agent content is 16%, and the curing temperature should not be lower than 20 degrees C.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2508345 ISSN: 1029-8436

Earthquakes are common geological disasters, and slopes under seismic loading can trigger coseismic landslides, while also becoming unstable due to accumulated damage caused by the seismic activity. Reinforced soil slopes are widely used as seismic-resistant geotechnical systems. However, traditional geosynthetics cannot sense internal damage in reinforced soil systems, and existing in-situ distributed monitoring technologies are not suitable for seismic conditions, thus limiting accurate post-earthquake stability assessments of slopes. This study presents, for the first time, the use of a batch molding process to fabricate self-sensing piezoelectric geogrids (SPGG) for distributed monitoring of soil behavior under seismic conditions. The SPGG's reinforcement and damage sensing abilities were verified through model experiments. Results show that SPGG significantly enhances soil seismic resistance and can detect soil failure locations through voltage distortions. Additionally, the tensile deformation of the reinforcement material can be quantified with sub-centimeter precision by tracking impedance changes, enabling high-precision distributed monitoring of reinforced soil under seismic conditions. Notably, when integrated with wireless transmission technology, the SPGG-based monitoring system offers a promising solution for real-time monitoring and early warning in road infrastructure, where rapid detection and response to seismic hazards are critical for mitigating catastrophic outcomes.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.05.007 ISSN: 0266-1144

The root-knot nematode, Meloidogyne javanica, is one of the most damaging plant-parasitic nematodes, affecting chickpea and causing substantial yield losses worldwide. The damage potential and population dynamics of this nematode in chickpea in Ethiopia have yet to be investigated. In this study, six chickpea cultivars were tested using 12 ranges of initial population densities (Pi) of M. javanica second-stage juveniles (J2): 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and 128 J2 (g dry soil)-1 in a controlled glasshouse pot experiment. The Seinhorst yield loss and population dynamics models were fitted to describe population development and the effect on different measured growth variables. The tolerance limit (TTFW) for total fresh weight ranged from 0.05 to 1.22 J2 (g dry soil)-1, with corresponding yield losses ranging from 31 to 64%. The minimum yield for seed weight (mSW) ranged from 0.29 to 0.61, with estimated yield losses of 71 and 39%. The 'Haberu' and 'Geletu' cultivars were considered good hosts, with maximum population densities (M) of 16.27 and 5.64 J2 (g dry soil)-1 and maximum multiplication rate (a) values of 6.25 and 9.23, respectively. All other cultivars are moderate hosts for M. javanica; therefore, it is crucial to initiate chickpea-breeding strategies to manage the tropical root-knot nematode M. javanica in Ethiopia.

期刊论文 2025-12-01 DOI: 10.1163/15685411-bja10371 ISSN: 1388-5545

Gunung Bromo Education Forest is a forest that functions as a buffer area to maintain the balance of the surrounding area. However, the undulating to hilly topography, the presence of rivers, and land management for annual crops can make the area vulnerable to erosion-induced degradation. This research aims to analyze and classify the erosion hazard level in Gunung Bromo Education Forest and analyze the relationship between research parameters and erosion in Gunung Bromo Education Forest. Erosion was predicted using the MUSLE method. This research used an explorative-descriptive method incorporating a survey and laboratory analysis. Furthermore, data analysis used was Analysis of Variance (ANOVA), Duncan's Multiple Range Test (DMRT) at a 5% significance level, and Pearson correlation test. The results showed that Gunung Bromo Education Forest erosion ranged from 0.025 to 78.36 t ha(-1)y(-1). The erosion hazard level in Gunung Bromo Education Forest is in the very light to heavy class and is dominated by the light class. The factors of erosivity (R), erodibility (K), slope (LS), and crop management (C) are positively correlated with erosion values. The conservation factor (P) is negatively correlated with erosion values. Making remedial efforts according to the erosion hazard level is important to avoid greater damage.

期刊论文 2025-12-01 ISSN: 1394-7990

The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10 degrees) or backward (i.e., more than 170 degrees) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0 degrees-20 degrees, 10 degrees-96 degrees, 84 degrees-170 degrees, 160 degrees-180 degrees, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0-180 degrees angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.

期刊论文 2025-12-01 DOI: 10.1016/j.optlastec.2025.113386 ISSN: 0030-3992

The application of prefabricated assembly technology in underground structures has increasingly garnered attention due to its potential for urban low-carbon development. However, given the vulnerability of such structures subjected to unexpected seismic events, a resilient prefabricated underground structure is deemed preferable for mitigating seismic responses and facilitating rapid recovery. This study proposes a resilient slip-friction connection-enhanced self-centering column (RSFC-SCC) for prefabricated underground structures to promote the multi-level self-centering benefits against multi-intensity earthquakes. The RSFC-SCC is composed of an SCC with two sub-columns and a series of multi-arranged replaceable RSFCs, intended to substitute the fragile central column. The mechanical model and practical manufacturing approach are elucidated, emphasizing its potential multi-level self-centering benefits and working mechanism. Given the established simulation model of RSFC-SCC-equipped prefabricated underground structures, the seismic response characteristics and mitigation capacity are investigated for a typical underground structure, involving robustness against various earthquakes. A multi-level self-centering capacity-oriented design with suggested parameter selection criteria is proposed for the RSFC-SCC to ensure that prefabricated underground structures achieve the desired vibration mitigation performance. The results show that the SCC with multi-arranged replaceable RSFCs exhibits a significant vibration isolating effect and enhanced self-centering capacity for the entire prefabricated underground structure. Benefiting from the multi-level self-centering process, the RSFC-SCC illustrates a robust capacity that adapts to varying intensities of earthquakes. The multi-level self-centering capacity-oriented design effectively facilitates the target seismic response control for the prefabricated underground structures. The energy dissipation burden and residual deformation of primary structures are mitigated within the target performance framework. Given the replacement ease of RSFCs and SCC, a rapid recovery of the prefabricated underground structure after an earthquake is ensured.

期刊论文 2025-10-01 DOI: 10.1016/j.tust.2025.106776 ISSN: 0886-7798

In recent years, increasing wildfire activity in the western United States has led to significant emissions of smoke aerosols, impacting the atmospheric energy balance through their absorption and scattering properties. Single scattering albedo (SSA) is a key parameter that governs these radiative effects, but accurately retrieving SSA from satellites remains challenging due to limitations in sensor resolution, low sensitivity of traditional remote sensing methods, and uncertainties in radiative transfer modeling, particularly from surface reflectance and aerosol characterization. Smoke optical properties evolve rapidly after emission, influenced by fuel type, combustion conditions, and chemical aging. Accurate SSA retrieval near the source thus requires high-temporal-resolution satellite observations. Critical Reflectance (CR) method provides this capability by identifying a unique reflectance value at which top-of-atmosphere (TOA) reflectance becomes insensitive to aerosol loading and primarily reflects aerosol absorption. SSA can be retrieved from this critical reflectance. This study presents a geostationary-based CR method using the Advanced Baseline Imager (ABI) on GOES-R satellites. The approach leverages ABI's high temporal (5-10 min) and spatial (3 km) resolution, consistent viewing geometry, and wide coverage. A tailored look-up table, based on an AOD-dependent smoke model for North America, links CR to SSA. Case studies show strong agreement with AERONET measurements, with retrieval differences mostly within 0.01-well below AERONET's +/- 0.03 uncertainty. The method captures temporal and spatial variations in smoke absorption and demonstrates robustness across daylight hours. This GEO-based CR approach offers an effective tool for high-resolution SSA retrieval, contributing to improved aerosol radiative forcing estimates and climate modeling.

期刊论文 2025-10-01 DOI: 10.1016/j.rse.2025.114837 ISSN: 0034-4257

Biogrouting has been proposed for improving mechanical properties of soils and rocks, whose performance greatly depends on the location of biocement at pore-scale. To enhance the performance of biogrouting, many strategies were proposed, including the addition of assistants, controlling curing moisture degree, and flocculation of bacteria. Clay is one such assistant which has been proven to be effective, with an assumption of increasing active biocement, i.e. those located between soil particles. In this work, we employed microfluidics to directly observe whether clay minerals can certainly control the location of precipitates and how they function. First of all, the capacity of bentonite and kaolin for adsorbing bacteria were investigated. Then, the location of CaCO3 crystals with and without clay minerals were visually observed using microfluidics. Pore-filling ratios and CaCO3 ratios, which are closely related to permeability and strength of biocemented soils, were quantitatively analyzed from collected images. Finally, the effects of bentonite and kaolin and their dosages on the location of biocement were comprehensively discussed. The results demonstrated that the performance of bentonite and kaolin on adsorbing bacteria and regulating biocement location is distinct due to differences in the morphologies of clays. These findings can help us to improve biogrouting performance on soil stabilization and propose new strategies in various practical applications, such as CO2 sequestration, heavy metal remediation, and oil recovery enhancement, all with a foundational understanding of their mechanisms.

期刊论文 2025-09-15 DOI: 10.1016/j.clay.2025.107860 ISSN: 0169-1317

Abiotic stress is characteristic of the semi-arid region, so fertilization with silicon (Si) can mitigate the damage caused by this stress, increasing yield and improving food quality. In this scenario, this study evaluated the agronomic performance and quality of onion bulbs as a function of Si doses in a semi-arid region of Brazil. A field experiment was conducted, designed in complete randomized blocks, testing Si doses (0, 42.6, 83.2, 124.8, and 166.4 kg ha-1), with four replicates. Dry mass, chlorophyll, nutrition, yield, and physicochemical quality of the bulbs were evaluated. Fertilization with Si increased the concentrations of P, N, K, Zn, and Cu in the leaves, indicating an improvement in the nutritional status. There was a decrease in the physicochemical characteristics of the bulbs, such as titratable acidity, soluble solids, total soluble sugars, ascorbic acid, and pyruvic acid, compared to the control. Fertilization with 68 and 72 kg ha-1 of Si, respectively, increased by 10% the commercial yield (81.49 t ha-1) and by 8% the total yield (87.96 t ha-1) of bulbs. The total and commercial yield of onion bulbs is increased with Si doses of 68 and 72 kg ha-1, respectively; however, Si reduces the concentration of physicochemical quality attributes of the bulbs.

期刊论文 2025-09-01 DOI: 10.1590/1807-1929/agriambi.v29n9e286362 ISSN: 1415-4366

Friction characteristics are critical mechanical properties of clay, playing a pivotal role in the structural stability of cohesive soils. In this study, molecular dynamics simulations were employed to investigate the shear behavior of undrained montmorillonite (MMT) nanopores with varying surface charges and interlayer cations (Na+, K+, Ca2+), subjected to different normal loads and sliding velocities. Consistent with previous findings, our results confirm that shear stress increases with normal load. However, the normal load-shear stress curves reveal two distinct linear regions, indicating segmented friction behavior. Remarkably, the friction coefficient declines sharply beyond a critical pressure point, ranging from 5 to 7.5 GPa, while cohesion follows an inverse trend. The elevated friction coefficient at lower pressures is attributed to the enhanced formation of hydrogen bonds and concomitant changes in density distribution. Furthermore, shear strength was observed to increase with sliding velocities, normal loads, and surface charges, with Na-MMT exhibiting superior shear strength compared to KMMT and Ca-MMT. Interestingly, the friction coefficient shows a slight decrease with increasing surface charge, while ion type exerts a minimal effect. In contrast, cohesion is predominantly influenced by surface charge and remains largely unaffected by ion type, except under extreme pressures and velocities.

期刊论文 2025-09-01 DOI: 10.1016/j.apsusc.2025.163382 ISSN: 0169-4332
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共751条,76页