夏季中国人口密集的长江中下游地区极端高温频发,严重影响了当地经济发展和生态系统.然而,当前对该地区极端高温日数的准确预测仍然是一个挑战.例如,美国国家海洋和大气管理局第二代气候预测系统(CFSv2)在这方面表现不佳.因此,基于年际增量方法,本文建立了长江中下游地区混合季节性预测模型(HMYRB),以提高对夏季极端高温日数的预测能力.该模型基于以下4个预测因子:观测的前期4到5月欧洲西北部融雪; 3月中西伯利亚高原积雪深度; CFSv2预测夏季海洋性大陆周围海温及青藏高原上空200hPa位势高度.结果显示,HMYRB在预测极端高温日数的年际变化和趋势方面显示出良好的能力,在1983~2015年留一法交叉验证中,相关系数达到0.58,同号率为76%.此外, HMYRB在独立预测期间(2016~2022年)也保持了较高的同号率(86%)预测技巧和稳健性.此外, HMYRB对于极端高温日数高频发的年份表现良好,命中率为40%.虽然在强度上存在偏差,但HMYRB中使用的预测因子对于预测长...
夏季中国人口密集的长江中下游地区极端高温频发,严重影响了当地经济发展和生态系统.然而,当前对该地区极端高温日数的准确预测仍然是一个挑战.例如,美国国家海洋和大气管理局第二代气候预测系统(CFSv2)在这方面表现不佳.因此,基于年际增量方法,本文建立了长江中下游地区混合季节性预测模型(HMYRB),以提高对夏季极端高温日数的预测能力.该模型基于以下4个预测因子:观测的前期4到5月欧洲西北部融雪; 3月中西伯利亚高原积雪深度; CFSv2预测夏季海洋性大陆周围海温及青藏高原上空200hPa位势高度.结果显示,HMYRB在预测极端高温日数的年际变化和趋势方面显示出良好的能力,在1983~2015年留一法交叉验证中,相关系数达到0.58,同号率为76%.此外, HMYRB在独立预测期间(2016~2022年)也保持了较高的同号率(86%)预测技巧和稳健性.此外, HMYRB对于极端高温日数高频发的年份表现良好,命中率为40%.虽然在强度上存在偏差,但HMYRB中使用的预测因子对于预测长...
夏季中国人口密集的长江中下游地区极端高温频发,严重影响了当地经济发展和生态系统.然而,当前对该地区极端高温日数的准确预测仍然是一个挑战.例如,美国国家海洋和大气管理局第二代气候预测系统(CFSv2)在这方面表现不佳.因此,基于年际增量方法,本文建立了长江中下游地区混合季节性预测模型(HMYRB),以提高对夏季极端高温日数的预测能力.该模型基于以下4个预测因子:观测的前期4到5月欧洲西北部融雪; 3月中西伯利亚高原积雪深度; CFSv2预测夏季海洋性大陆周围海温及青藏高原上空200hPa位势高度.结果显示,HMYRB在预测极端高温日数的年际变化和趋势方面显示出良好的能力,在1983~2015年留一法交叉验证中,相关系数达到0.58,同号率为76%.此外, HMYRB在独立预测期间(2016~2022年)也保持了较高的同号率(86%)预测技巧和稳健性.此外, HMYRB对于极端高温日数高频发的年份表现良好,命中率为40%.虽然在强度上存在偏差,但HMYRB中使用的预测因子对于预测长...
作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System, version 2)对冬半年(11~2月)及逐月西伯利亚高压强度的预测效能。结果表明,NCEP-CFSv2模式仅对11月西伯利亚高压强度的预测效能较好,研究其成因发现11月西伯利亚高压强度主要受该地区热力、动力过程以及西伯利亚地区积雪状况的影响。在热力过程方面,NCEP-CFSv2模式可以较好地再现11月西伯利亚高压强度及其相联的该地区表层土壤温度、对外长波辐射等热力因素;在动力过程方面,模式能较好地再现11月西伯利亚高压强度及其相联的该地区对流层低层辐散环流、中高层下沉运动;同时,模式也能较好地再现11月西伯利亚高压强度与该地区积雪覆盖率之间的相互作用。因此,与11月西伯利亚高压相联的热力、动力过程和该地区积雪状况可能是11月西伯利亚高压强度的可预测来源,且NCEP-CFSv2模式能较好地...
作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System, version 2)对冬半年(11~2月)及逐月西伯利亚高压强度的预测效能。结果表明,NCEP-CFSv2模式仅对11月西伯利亚高压强度的预测效能较好,研究其成因发现11月西伯利亚高压强度主要受该地区热力、动力过程以及西伯利亚地区积雪状况的影响。在热力过程方面,NCEP-CFSv2模式可以较好地再现11月西伯利亚高压强度及其相联的该地区表层土壤温度、对外长波辐射等热力因素;在动力过程方面,模式能较好地再现11月西伯利亚高压强度及其相联的该地区对流层低层辐散环流、中高层下沉运动;同时,模式也能较好地再现11月西伯利亚高压强度与该地区积雪覆盖率之间的相互作用。因此,与11月西伯利亚高压相联的热力、动力过程和该地区积雪状况可能是11月西伯利亚高压强度的可预测来源,且NCEP-CFSv2模式能较好地...
作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System, version 2)对冬半年(11~2月)及逐月西伯利亚高压强度的预测效能。结果表明,NCEP-CFSv2模式仅对11月西伯利亚高压强度的预测效能较好,研究其成因发现11月西伯利亚高压强度主要受该地区热力、动力过程以及西伯利亚地区积雪状况的影响。在热力过程方面,NCEP-CFSv2模式可以较好地再现11月西伯利亚高压强度及其相联的该地区表层土壤温度、对外长波辐射等热力因素;在动力过程方面,模式能较好地再现11月西伯利亚高压强度及其相联的该地区对流层低层辐散环流、中高层下沉运动;同时,模式也能较好地再现11月西伯利亚高压强度与该地区积雪覆盖率之间的相互作用。因此,与11月西伯利亚高压相联的热力、动力过程和该地区积雪状况可能是11月西伯利亚高压强度的可预测来源,且NCEP-CFSv2模式能较好地...
A change in soil temperature (ST) is a significant indicator of climate change, so understanding the variations in ST is required for studying the changes of the Qinghai-Tibet Plateau (QTP) permafrost. We investigated the performance of three reanalysis ST products at three soil depths (0-10 cm, 10-40 cm, and 40-100 cm) on the permafrost regions of the QTP: the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim), the second version of the National Centers for Environmental Prediction Climate Forecast System (CFSv2), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Our results indicate that all three reanalysis ST products underestimate observations with negative mean bias error values at all three soil layers. The MERRA-2 product performed best in the first and second soil layers, and the ERA-Interim product performed best in the third soil layer. The spatiotemporal changes of annual and seasonal STs on the QTP from 1980 to 2017 were investigated using Sen's slope estimator and the Mann-Kendall test. There was an increasing trend of ST in the deeper soil layer, which was less than that of the shallow soil layers in the spring and summer as well as annually. In contrast, the first-layer ST warming rate was significantly lower than that of the deeper soil layers in the autumn and winter. The significantly (P < 0.01) increasing trend of the annual ST indicates that the QTP has experienced climate warming during the past 38 years, which is one of the factors promoting permafrost degradation of the QTP.