不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...
不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...
不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...
不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...
不同初始值对多年冻土水热过程的模拟有着深刻的影响。本文利用青藏高原三江源多年冻土区西大滩站观测数据,驱动通用陆面模式CLM4.5(Community Land Model version 4.5)对该站多年冻土进行为期14个月的模拟研究。设计三组试验,检验CLM4.5模式对多年冻土模拟性能,探究不同初始土壤温度、液态水含量以及含冰量对模拟结果的影响,并对土壤初始含冰量的计算进行改进,提高了模式对多年冻土水热过程的模拟。通过对比土壤含冰量模拟值,液态水含量和土壤温度观测值与模拟值,结果表明:(1)初始土壤温度、液态水含量会通过影响初始土壤含冰量进而影响CLM4.5模式对多年冻土水热过程的模拟。(2)CLM4.5默认初始土壤温度、液态水含量时,计算出的初始含冰量为0 m3·m-3,这使得模式不能准确模拟出多年冻土的特征。在2015年11月上旬至2016年8月上旬土壤含冰量大于0.01m3·m-3,其余时段土壤含冰量几乎为0 m3·m-3;整层土壤液态水含量从冬...
利用位于季节冻土区的中国科学院那曲高寒气候环境观测研究站那曲/BJ观测点的野外观测数据,通过CLM4.5的单点模拟实验,分析评估了Luo土壤热导率参数化方案、Johansen土壤热导率参数化方案、C?té土壤热导率参数化方案和虚温参数化方案对土壤温、湿度的模拟能力,为将来选取最优的参数及参数化方案来更合理的模拟青藏高原土壤冻融过程为目的的工作提供依据。结果表明:(1)三种土壤热导率参数化方案模拟结果的土壤热传导率有明显差异,其中C?té方案的土壤热传导率最高,Luo方案的土壤热传导率最低。(2)三种热传导率方案均能合理地模拟出土壤温湿度的日变化趋势,Johansen方案对土壤温度年变化趋势模拟的更好,C?té方案对土壤温度模拟的数值较观测值偏离的更小,Luo方案对土壤湿度的模拟更好。(3)加入虚拟温度方程,并引入相变效率参数后,减少了模式对土壤湿度模拟的负偏差,Y-L方案在保持土壤温度较好模拟能力的基础上,能够进一步的提升土壤湿度的模拟能力。
利用位于季节冻土区的中国科学院那曲高寒气候环境观测研究站那曲/BJ观测点的野外观测数据,通过CLM4.5的单点模拟实验,分析评估了Luo土壤热导率参数化方案、Johansen土壤热导率参数化方案、C?té土壤热导率参数化方案和虚温参数化方案对土壤温、湿度的模拟能力,为将来选取最优的参数及参数化方案来更合理的模拟青藏高原土壤冻融过程为目的的工作提供依据。结果表明:(1)三种土壤热导率参数化方案模拟结果的土壤热传导率有明显差异,其中C?té方案的土壤热传导率最高,Luo方案的土壤热传导率最低。(2)三种热传导率方案均能合理地模拟出土壤温湿度的日变化趋势,Johansen方案对土壤温度年变化趋势模拟的更好,C?té方案对土壤温度模拟的数值较观测值偏离的更小,Luo方案对土壤湿度的模拟更好。(3)加入虚拟温度方程,并引入相变效率参数后,减少了模式对土壤湿度模拟的负偏差,Y-L方案在保持土壤温度较好模拟能力的基础上,能够进一步的提升土壤湿度的模拟能力。
青藏高原积雪变化对陆面能量水分传输过程有重要影响。本文采用RegCM4.7-CLM4.5模式模拟了高原及其周边地区31年的积雪过程,通过对模拟结果的EOF分解,发现高原积雪的时空变化主要呈现为高原主体与高原东北部反相、东西反相以及南北反相3种模态,方差贡献率分别为30.05%,14.86%和8.48%。合成分析显示,高原积雪异常中心与高原的主要积雪区较为一致,积雪深度与积雪日数均有减小的气候倾向,高原东南部的"三江源区"减小趋势最明显,高原中北部积雪有略微增加的趋势。积雪与土壤水热参量的相关分析显示,多雪区积雪可以有效减少土壤中热量的流失,对土壤起到"保温"作用,积累和鼎盛阶段积雪与土壤温度、地表热通量同位相变化;积雪融水又可以增加土壤湿度,对土壤起到"增湿"作用,鼎盛阶段积雪与土壤含水量正相关,积雪日数对土壤湿度的影响要高于积雪深度。在多雪区,多雪年积累阶段、鼎盛阶段的土壤温度和土壤湿度也要高于少雪年。对整个高原而言,积雪偏多使得土壤冻结程度加大,土壤含水量减少。
青藏高原积雪变化对陆面能量水分传输过程有重要影响。本文采用RegCM4.7-CLM4.5模式模拟了高原及其周边地区31年的积雪过程,通过对模拟结果的EOF分解,发现高原积雪的时空变化主要呈现为高原主体与高原东北部反相、东西反相以及南北反相3种模态,方差贡献率分别为30.05%,14.86%和8.48%。合成分析显示,高原积雪异常中心与高原的主要积雪区较为一致,积雪深度与积雪日数均有减小的气候倾向,高原东南部的"三江源区"减小趋势最明显,高原中北部积雪有略微增加的趋势。积雪与土壤水热参量的相关分析显示,多雪区积雪可以有效减少土壤中热量的流失,对土壤起到"保温"作用,积累和鼎盛阶段积雪与土壤温度、地表热通量同位相变化;积雪融水又可以增加土壤湿度,对土壤起到"增湿"作用,鼎盛阶段积雪与土壤含水量正相关,积雪日数对土壤湿度的影响要高于积雪深度。在多雪区,多雪年积累阶段、鼎盛阶段的土壤温度和土壤湿度也要高于少雪年。对整个高原而言,积雪偏多使得土壤冻结程度加大,土壤含水量减少。