Surface albedo (SA) is crucial for understanding land surface processes and climate simulation. This study analyzed SA changes and its influencing factors in Central Asia from 2001 to 2020, with projections 2025 to 2100. Factors analyzed included snow cover fraction, fractional vegetation cover, soil moisture, average state climate indices (temperature and precipitation), and extreme climate indices (heatwave indices and extreme precipitation indices). Pearson correlation coefficient, geographical convergent cross mapping, and geographical detector were used to quantify the correlation, causal relationship strength, and impact degree between SA and the influencing factors. To address multicollinearity, ridge regression (RR), geographically weighted ridge regression (GWRR), and piecewise structural equation modeling (pSEM) were combined to construct RR-pSEM and GWRR-pSEM models. Results indicated that SA in Central Asia increased from 2001 to 2010 and decreased from 2011 to 2020, with a projected future decline. There is a strong correlation and significant causality between SA and each factor. Snow cover fraction was identified as the most critical factor influencing SA. Average temperature and precipitation had a greater impact on SA than extreme climate indices, with a 1 degrees C temperature increase corresponding to a 0.004 decrease in SA. This study enhances understanding of SA changes under climate change, and provides a methodological framework for analyzing complex systems with multicollinearity. The proposed models offer valuable tools for studying interrelated factors in Earth system science.
2024-11-01 Web of ScienceSnow is an important factor controlling vegetation functions in high latitudes/altitudes. However, due to the lack of reliable in -situ measurements, the effects of snow on vegetation phenology remains poorly understood. Here, we examine the effects of snow cover duration (SCD) on the start of growing season (SOS) for different vegetation types. SOS and SCD were extracted from in -situ carbon flux and albedo data, respectively, at 51 eddy covariance flux sites in the northern mid -high latitudes. The effects of SCD on SOS vary substantially among different vegetation types. For grassland, preseason SCD outperforms other factors controlling grassland SOS. However, for forests and cropland, the preseason air temperature is the dominant factor in controlling SOS. Preseason SCD mainly influences the SOS by regulating preseason air and soil temperature rather than soil moisture. The CMIP6 Earth system models (ESMs) fail to capture the effect of SCD on SOS. Thus, Random Forest (RF) models were established to predict future SOS changing trends considering the effect of SCD. For grassland and evergreen needleleaf forest, the projected SOS advance rate is slower when SCD is considered. These findings can help us better understand impacts of snow on vegetation phenology and carbon -climate feedbacks in the warming world.
2024-08-15 Web of ScienceIn this paper, we used data from 42 soil temperature observation sites in permafrost regions throughout the Northern Hemisphere to analyze the characteristics and variability in soil temperature. The observation data were used to evaluate soil temperature simulations at different depths from 10 CMIP6 models in the permafrost region of the Northern Hemisphere. The results showed that the annual average soil temperature in the permafrost regions in the Northern Hemisphere gradually decreased with increasing latitude, and the soil temperature gradually decreased with depth. The average soil temperatures at different depths were mainly concentrated around 0 degrees C. The 10 CMIP6 models performed well in simulating soil temperature, but most models tended to underestimate temperatures compared to the measured values. Overall, the CESM2 model yielded the best simulation results, whereas the CNRM-CM6-1 model performed the worst. The change trends in annual average soil temperature across the 42 sites ranged from -0.17 degrees C/10a to 0.41 degrees C/10a from 1900 to 2014, the closer to the Arctic, the faster the soil warming rate. The rate of soil temperature change also varied at different depths between 1900-2014 and 1980-2014. The rate of soil temperature change from 1980 to 2014 was approximately three times greater than that from 1900 to 2014.
2024-07-01 Web of SciencePermafrost degradation on the Tibetan Plateau (TP) is anticipated to result in the thaw of permafrost carbon. Existing studies have been conducted to assess the future thaw of frozen carbon on the TP, primarily focusing on the deepening of the active layer while neglecting the impact of permafrost area shrinkage. This oversight may lead to a significant underestimation of the potential thaw of frozen carbon. Our research underscores the pivotal role of permafrost area shrinkage in estimating the future thaw of frozen carbon. Our findings reveal that when the combined effects of permafrost area shrinkage and active layer deepening are considered, the thaw rates of frozen carbon in various radiative forcing scenarios are nearly four times those based on active layer deepening alone. Notably, our results demonstrate substantial thaw of frozen organic carbon in the TP permafrost area under all four future scenarios: In the low radiative forcing scenario SSP1-2.6, it is predicted that 55.4 % of the organic carbon in the permafrost area 0-10 m soils will be in a state of thaw by 2100, and more than 90 % in the high radiative forcing scenario SSP5-8.5. This substantial thaw is poised to diminish the TP's current carbon sink function significantly. Our study emphasizes that as global warming persists, frozen carbon in permafrost areas will play a more active role in global carbon cycle processes in the future. Furthermore, we stress the importance of considering permafrost area shrinkage in understanding the thaw of frozen carbon, providing valuable insights for carbon balance studies on the TP.
2024-06-01 Web of ScienceMany studies have focused on elevation-dependent warming (EDW) across high mountains, but few studies have examined both EDW and LDW (latitude-dependent warming) on Antarctic warming. This study analyzed the Antarctic amplification (AnA) with respect to EDW and LDW under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 from Coupled Model Intercomparison Project Phase 6 (CMIP6) during the period 2015-2100. The results show that the AnA appears under all socioeconomic scenarios, and the greatest signal appears in austral autumn. In the future, Antarctic warming is not only elevation-dependent, but also latitude-dependent. Generally, positive EDW of mean temperature (T-mean), maximum temperature (T-max) and minimum temperature (T-min) appear in the range of 1.0-4.5 km, and the corresponding altitudinal amplification trends are 0.012/0.012/0.011 (SSP1-2.6)- 0.064/0.065/0.053 (SSP5-8.5) degrees C decade(-1)center dot km(-1). Antarctic EDW demonstrates seasonal differences, and is strong in summer and autumn and weak in winter under SSP3-7.0 and SSP5-8.5. For T(mea)n, T-max and T-min, the feature of LDW is varies in different latitude ranges, and also shows seasonal differences. The strongest LDW signal appears in autumn, and the warming rate increases with increasing latitude at 64-79 degrees S under SSP1-2.6. The similar phenomenon can be observed at 68-87 degrees S in the other cases. Moreover, the latitude component contributes more to the warming of T-mean and T-max relative to the corresponding altitude component, which may relates to the much larger range of latitude (similar to 2600 km) than altitude (similar to 4.5 km) over Antarctica, while the EDW contributes more warming than LDW in the changes in T-min in austral summer. Moreover, surface downwelling longwave radiation, water vapor and latent heat flux are the potential factors influencing Antarctic EDW, and the variation in surface downwelling longwave radiation can also be considered as an important influencing factor for Antarctic LDW. Our results provide preliminary insights into EDW and LDW in Antarctica.
2024-01The Tibetan Plateau (TP) is the largest permafrost distribution zone at high-altitude in the mid-latitude region. Climate change has caused significant permafrost degradation on the TP, which has important impacts for the eco-hydrological processes. In this study, the frost number is utilized to calculate the frost number (F) based on the air freezing/thawing index obtained from the downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets. A novel method is proposed to determine the frost number threshold (Ft) for diagnosing permafrost distribution. Then the simulated permafrost distribution maps are compared with the existing permafrost distribution map, employing the Kappa coefficient as the measure of classification accuracy to identify the optimal Ft. Finally, the permafrost distribution on the TP under different Shared Socio-economic Pathways (SSP) scenarios are diagnosed with the optimal Ft. Simulation results demonstrate that across all scenarios, the rates of permafrost degradation during the mid-future period (2040-2060) remain comparable to those observed in the baseline period (2000), ranging from 33% +/- 3% to 53% +/- 4%. Conversely, during the far-future (2080-2099), the permafrost degradation rates display significant variation across different scenarios, ranging from 37% +/- 4% to 96% +/- 3%. The profound impacts of permafrost degradation on the TP are reflected in decreasing trends in soil moisture and runoff, as well as a slower increasing trend in Normalized Difference Vegetation Index (NDVI) compared to other regions, indicating negative impacts on vegetation growth. The Tibetan Plateau, the highest plateau in the world and the largest high-altitude permafrost region, is experiencing permafrost degradation due to climate change, significantly impacting eco-hydrological processes in this region. In this study, we used the frost number model with air temperature to simulate the distribution of permafrost on the Tibetan Plateau under different scenarios. The results show that permafrost on the Tibetan Plateau is projected to degrade in the 21st century, especially under high-emission scenarios. The degradation of permafrost will likely reduce soil moisture and runoff. Additionally, vegetation growth in areas with permafrost degradation is expected to be slow. These findings are of great significance for understanding permafrost changes on the Tibetan Plateau and their impacts on eco-hydrological processes. A new method using the frost number model with Kappa coefficient is proposed to diagnose permafrost distributionPermafrost on the Tibetan Plateau will experience the least degradation (33% +/- 3%) under SSP126, and the most (96% +/- 3%) under SSP585 in 2080-2099Permafrost degradation on the Tibetan Plateau is anticipated to reduce soil moisture and runoff, adversely affecting vegetation growth
2024-01-01 Web of ScienceIn the context of global warming, the soil freeze depth (SFD) over the Tibetan Plateau (TP) has undergone significant changes, with a series of profound impacts on the hydrological cycle and ecosystem. The complex terrains and high elevations of the TP pose great challenges in data acquisition, presenting difficulties for studying SFD in this region. This study employs Stefan's solution and downscaled datasets from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate the future SFDs over the TP. The changing trends of the projected SFDs under different Shared Socio-economic Pathways (SSP) scenarios are investigated, and; the responses of SFDs to potential climatic factors, such as temperature and precipitation, are analyzed. The potential impacts of SFD changes on eco-hydrological processes are analyzed based on the relationships between SFDs, the distribution of frozen ground, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Results show that the projected SFDs of the TP are estimated to decrease at rates of 0.100 cm/yr under the SSP126, 0.330 cm/yr under the SSP245, 0.565 cm/yr under the SSP370, and 0.750 cm/yr under the SSP585. Additionally, the SFD decreased at a rate of 0.160 cm/yr during the historical period from 1950 to 2014, which was between the decreasing rates of the SSP126 and SSP245 scenarios. The projected SFDs are negatively correlated with air temperature and precipitation, more significant under the higher emissions scenario. The projected decrease in SFDs will significantly impact eco-hydrological processes. A rapid decrease in SFD may lead to a decline in soil moisture content and have adverse impacts on vegetation growth. This research provides valuable insights into the future changes in SFD on the TP and their impacts on eco-hydrological processes.
2023-12-20 Web of ScienceIn this paper, we used data from 42 soil temperature observation sites in permafrost regions throughout the Northern Hemisphere to analyze the characteristics and variability in soil temperature. The observation data were used to evaluate soil temperature simulations at different depths from 10 CMIP6 models in the permafrost region of the Northern Hemisphere. The results showed that the annual average soil temperature in the permafrost regions in the Northern Hemisphere gradually decreased with increasing latitude, and the soil temperature gradually decreased with depth. The average soil temperatures at different depths were mainly concentrated around 0 degrees C. The 10 CMIP6 models performed well in simulating soil temperature, but most models tended to underestimate temperatures compared to the measured values. Overall, the CESM2 model yielded the best simulation results, whereas the CNRM-CM6-1 model performed the worst. The change trends in annual average soil temperature across the 42 sites ranged from -0.17 degrees C/10a to 0.41 degrees C/10a from 1900 to 2014, the closer to the Arctic, the faster the soil warming rate. The rate of soil temperature change also varied at different depths between 1900-2014 and 1980-2014. The rate of soil temperature change from 1980 to 2014 was approximately three times greater than that from 1900 to 2014.
2023-08The Tarim River, the largest inland river in China, sits in the Tarim River Basin (TRB), which is an arid area with the ecosystem primarily sustained by water from melting snow and glaciers in the headstream area. To evaluate the pressures of natural disasters in this climate-change-sensitive basin, this study projected flash droughts in the headstream area of the TRB. We used the variable infiltration capacity (VIC) model to describe the hydrological processes of the study area, Markov chain Monte Carlo to quantify the parameter uncertainty of the VIC model. Ten downscaled general circulation models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to drive the VIC model, and the standardized evaporative stress ratio was applied to identify flash droughts. The results demonstrated that the VIC model after Bayesian parameters uncertainty analysis can efficiently describe the hydrological processes of the study area. In the future (2021-2100), compared with the plain region, the alpine region has higher flash drought frequency and intensity. Compared with the historical period (1961-2014), the frequency, duration, and intensity of flash droughts tend to increase throughout the study area, especially for the alpine area. Moreover, based on variance decomposition, CMIP6 model is the most important uncertainty source for flash drought projection, followed by the shared socioeconomic pathway of climate change scenario and VIC model parameters.
2023-03-27 Web of ScienceSurface air temperatures are significant indicators of environmental and climatic change that affect a diverse set of physical systems including permafrost. Most temperature products, such as gridded or reanalysis data, are still at a relatively low spatial resolution, limiting the ability to simulate heterogeneous permafrost changes and leading to large uncertainties. Here we apply a downscaling method based on elevation to obtain high-resolution surface air temperatures from the sixth Coupled Model Intercomparison Project in Northern Hemisphere permafrost regions. Root-mean-square errors and mean absolute errors after downscaling are reduced by 34 and 37%, respectively, relative to meteorological site data and gridded observations from the Climatic Research Unit. Compared to the downscaled surface air temperature data, non-downscaled model projections overestimate by 0.12-0.39 degrees C in the discontinuous, isolated, and sporadic permafrost regions and underestimate up to 0.18 degrees C in the continuous permafrost region under different emission scenarios. The warming rates in Northern Hemisphere permafrost regions were 0.093 degrees C/10 year during the historical (1850-2014) period and are projected to be 0.22 degrees C/10 year for SSP1-2.6, 0.48 degrees C/10 year for SSP2-4.5, 0.75 degrees C/10 year for SSP3-7.0, and 0.95 degrees C/10 year for SSP5-8.5 during 2015-2100, which is 1.4-1.6 times the warming of non-permafrost regions. Warming rates in high latitudes are 1.2-1.7 times higher than those in high-elevation regions. Continuous permafrost regions' warming will be 1.2-1.4 times higher than in other permafrost regions. For permafrost with high ground ice content, warming will be 1.1 times greater than in permafrost regions with medium or low ground ice content.
2023-03-15 Web of Science