化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2
化学风化可消耗CO2,在地质时间尺度上调控碳循环和全球气候变化。随着全球气候变暖、冰川融化加剧,冰川流域的化学风化速率可能发生改变,其对碳循环的影响尚不明确。本文选择位于青藏高原东南缘的梅里雪山明永冰川流域作为研究区,开展为期两年(2018年10月至2020年10月)的河水水文指标监测和逐日采样,采集731个河水样品,探讨明永冰川流域河水的水化学特征,量化流域内岩石化学风化速率和碳汇/碳源速率。结果表明,明永冰川流域河水的水化学类型为HCO3-Ca型,硫酸参与碳酸盐风化对河水成分的影响最大(62.1%),碳酸参与碳酸盐岩风化、硅酸盐岩风化和大气输入的贡献分别为32.4%、4.5%和1.0%。硅酸盐岩风化消耗大气CO2通量的平均值为0.31×10~3 mol·km-2·a-1,硫酸参与碳酸盐岩风化向大气释放CO2通量的平均值为4.00×10~3 mol·km-2·a-1。可见,研究区化学风化释放CO2