共检索到 30

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.

期刊论文 2025-01-01 DOI: 10.1002/ecy.4498 ISSN: 0012-9658

Freeze-thaw (FT) events profoundly perturb the biochemical processes of soil and water in mid- and high-latitude regions, especially the riparian zones that are often recognized as the hotspots of soil-water interactions and thus one of the most sensitive ecosystems to future climate change. However, it remains largely unknown how the heterogeneously composed and progressively discharged meltwater affect the biochemical cycling of the neighbor soil. In this study, stream water from a valley in the Chinese Loess Plateau was frozen at -10 degrees C for 12 hours, and the meltwater (at +10 degrees C) progressively discharged at three stages (T1 similar to T3) was respectively added to rewet the soil collected from the same stream bed (Soil+T1 similar to Soil+T3). Our results show that: (1) Approximately 65% of the total dissolved organic carbon and 53% of the total NO3--N were preferentially discharged at the first stage T1, with enrichment ratios of 1.60 similar to 1.94. (2) The dissolved organic matter discharged at T1 was noticeably more biodegradable with significantly lower SUVA(254) but higher HIX, and also predominated with humic-like, dissolved microbial metabolite-like, and fulvic acid-like components. (3) After added to the soil, the meltwater discharged at T1 (e.g., Soil+T1) significantly accelerated the mineralization of soil organic carbon with 2.4 similar to 8.07-folded k factor after fitted into the first-order kinetics equation, triggering 125 similar to 152% more total CO2 emissions. Adding T1 also promoted significantly more accumulation of soil microbial biomass carbon after 15 days of incubation, especially on the FT soil. Overall, the preferential discharge of the nutrient-enriched meltwater with more biodegradable DOM components at the initial melting stage significantly promoted the microbial growth and respiratory activities in the recipient soil, and triggered sizable CO2 emission pulses. This reveals a common but long-ignored phenomenon in cold riparian zones, where progressive freeze-thaw can partition and thus shift the DOM compositions in stream water over melting time, and in turn profoundly perturb the biochemical cycles of the neighbor soil body.

期刊论文 2024-11-15 DOI: 10.1016/j.watres.2024.122360 ISSN: 0043-1354

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002-2014, the strongest CO2 sink was located in western Canada (median: -52 g C m-2 y-1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: -5 to -9 g C m-2 y-1). Eurasian regions had the largest median wetland methane fluxes (16-18 g CH4 m-2 y-1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects. Climate change and the consequent thawing of permafrost threatens to transform the permafrost region from a carbon sink into a carbon source, posing a challenge to global climate goals. Numerous studies over the past decades have identified important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Overall, studies show high wetland methane emissions and a small net carbon dioxide sink strength over the terrestrial permafrost region but results differ among modeling and upscaling approaches. Continued and coordinated efforts among field, modeling, and remote sensing communities are needed to integrate new knowledge from observations to modeling and predictions and finally to policy. Rapid warming of northern permafrost region threatens ecosystems, soil carbon stocks, and global climate targets Long-term observations show importance of disturbance and cold season periods but are unable to detect spatiotemporal trends in C flux Combined modeling and syntheses show the permafrost region is a small terrestrial CO2 sink with large spatial variability and net CH4 source

期刊论文 2024-03-01 DOI: 10.1029/2023JG007638 ISSN: 2169-8953

Ongoing studies conducted in northern polar regions reveal that permafrost stability plays a key role in the modern carbon cycle as it potentially stores considerable quantities of greenhouse gases. Rapid and recent warming of the Arc-tic permafrost is resulting in significant greenhouse gas emissions, both from physical and microbial processes. The po-tential impact of greenhouse gas release from the Antarctic region has not, to date, been investigated. In Antarctica, the McMurdo Dry Valleys comprise 10 % of the ice-free soil surface areas in Antarctica and like the northern polar regions are also warming albeit at a slower rate.The work presented herein examines a comprehensive sample suite of soil gas (e.g., CO2, CH4 and He) concentrations and CO2 flux measurements conducted in Taylor Valley during austral summer 2019/2020. Analytical results reveal the presence of significant concentrations of CO2, CH4 and He (up to 3.44 vol%, 18,447 ppmv and 6.49 ppmv, respec-tively) at the base of the active layer. When compared with the few previously obtained measurements, we observe increased CO2 flux rates (estimated CO2 emissions in the study area of 21.6 km2 approximate to 15 tons day-1). We suggest that the gas source is connected with the deep brines migrating from inland (potentially from beneath the Antarctic Ice Sheet) towards the coast beneath the permafrost layer. These data provide a baseline for future investigations aimed at monitoring the changing rate of greenhouse gas emissions from Antarctic permafrost, and the potential origin of gases, as the southern polar region warms.

期刊论文 2023-03-25 DOI: 10.1016/j.scitotenv.2022.161345 ISSN: 0048-9697

Short-lived climate pollutants (SLCPs) including methane, tropospheric ozone, and black carbon in this work, is a set of compounds with shorter lifetimes than carbon dioxide (CO2) and can cause warming effect on climate. Here, the effective radiative forcing (ERF) is estimated by using an online aerosol-climate model (BCC_AGCM2.0_CUACE/Aero); then the climate responses to SLCPs concentration changes from the pre-industrial era to the present (1850-2010) are estimated. The global annual mean ERF of SLCPs was estimated to be 0.99 [0.79-1.20] W m(-2), and led to warming effects over most parts of the globe, with the warming center (about 1.0 K increase) being located in the mid-high latitudes of the Northern Hemisphere (NH) and the ocean around Antarctica. The changes in annual mean surface air temperature (SAT) caused by SLCPs changes were more prominent in the NH [0.78 (0.62-0.94) K] than in the Southern Hemisphere [0.62 (0.45-0.74) K], and the global annual mean value is 0.70 K. By looking at other variable responses, we found that precipitation had been increased by about 0.10 mm d(-1) in mid- and high-latitudes and decreased by about 0.20 mm d(-1) in subtropical regions, with the global annual mean value of 0.02 mm d(-1). Changes in SLCPs also influenced atmospheric circulation change, a northward shift in the Intertropical Convergence Zone was induced due to the interhemispheric asymmetry in SAT. However, it is found in this work that SLCPs changes had little effect on global average cloud cover, whereas the local cloud cover changes could not be ignored, low cloud cover increase by about 2.5% over high latitudes in the NH and the ribbon area near 60 degrees S, and high cloud cover increased by more than 2.0% over northern Africa and the Indian Ocean. Finally, we compared the ERFs and global and regional warming effects of SLCPs with those induced by CO2 changes. From 1850 to the present, the ERF of SLCPs was equivalent to 66%, 83%, and 50% of that of CO2 in global, NH, and SH mean, respectively. The increases in SAT caused by SLCPs were 43% and 55% of those by CO2 over the globe and China, respectively.

期刊论文 2022-09-27 DOI: 10.3389/feart.2022.1008164

Greenhouse gases (GHGs) released from permafrost regions may have a positive feedback to climate change, but there is much uncertainty about additional warming from the permafrost carbon cycle. One of the main reasons for this uncertainty is that the observation data of large-scale GHG concentrations are sparse, especially for areas with rapid permafrost degradation. We selected the Mongolian Plateau as the study area. We first analyzed the active layer thickness and ground temperature changes using borehole observations. Based on ground observation data, we assessed the applicability of Greenhouse Gases Observing Satellite (GOSAT) carbon dioxide (CO2) and methane (CH4) datasets. Finally, we analyzed the temporal and spatial changes in near-surface CO2 and CH4 concentrations from 2010 to 2017 and their patterns in different permafrost regions. The results showed that the Mongolian permafrost has been experiencing rapid degradation. The annual average near-surface CO2 concentration increased gradually between 2.19 ppmv/yr and 2.38 ppmv/yr, whereas the near-surface CH4 concentration increased significantly from 7.76 ppbv/yr to 8.49 ppbv/yr. There were significant seasonal variations in near-surface CO2 and CH4 concentrations for continuous, discontinuous, sporadic, and isolated permafrost zones. The continuous and discontinuous permafrost zones had lower near-surface CO2 and CH4 concentrations in summer and autumn, whereas sporadic and isolated permafrost zones had higher near-surface CO2 and CH4 concentrations in winter and spring. Our results indicated that climate warming led to rapid permafrost degradation, and carbon-based GHG concentrations also increased rapidly in Mongolia. Although, GHG concentrations increased at rates similar to the global average and many factors can account for their changes, GHG concentration in the permafrost regions merits more attention in the future because the spatiotemporal distribution has indicated a different driving force for regional warming. (C) 2021 Elsevier B.V. All rights reserved.

期刊论文 2021-12-15 DOI: 10.1016/j.scitotenv.2021.149433 ISSN: 0048-9697

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km(2)) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m(-2) yr(-1), respectively) compared to tundra (average annual NEE +10 and -2 g C m(-2) yr(-1)). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.

期刊论文 2021-09-01 DOI: 10.1111/gcb.15659 ISSN: 1354-1013

Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr(-1), and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr(-1). Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The for-mation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m(-2) (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m(-2)), CO2 (34.3 mW m(-2)), and NOx (17.5 mW m(-2)). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m(-2). Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.

期刊论文 2021-01-01 DOI: 10.1016/j.atmosenv.2020.117834 ISSN: 1352-2310

The annual balance of biogenic greenhouse gases (GHGs; carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) in the atmosphere is well studied. However, the contributions of specific natural land sources and sinks remain unclear, and the effect of different human land use activities is understudied. A simple way to do this is to evaluate GHG soil emissions. For CO2, it usually comprises 60-75% of gross respiration in natural terrestrial ecosystems, while local human impact can increase this share to almost 100%. Permafrost-affected soils occupying 15% of the land surface mostly in the Eurasia and North America contain approximately 25% of the total terrestrial carbon. The biogenic GHG soil emissions from permafrost are 5% of the global total, which makes these soils extremely important in the warming world. Measurements of CO2, methane, and nitrous oxide, from eighteen locations in the Arctic and Siberian permafrost, across tundra, steppe, and north taiga domains of Russia and Svalbard, were conducted from August to September during 2014-2017 in 37 biotopes representing natural conditions and different types of human impact. We demonstrate that land use caused significant alteration in soil emission and net fluxes of GHGs compared to natural rates, regardless of the type and duration of human impact and the ecosystem type. The cumulative effect of land use factors very likely supported an additional net-source of CO2 into the atmosphere because of residual microbial respiration in soil after the destruction of vegetation and primary production under anthropogenic influence. Local drainage effects were more significant for methane emission. In general, land use factors enforced soil emission and net-sources of CO2 and N2O and weakened methane sources. Despite the extended heat supply, high aridity caused significantly lower emissions of methane and nitrous oxide in ultra-continental Siberian permafrost soils. However, these climatic features support higher soil CO2 emission rates, in spite of dryness, owing to the larger phytomass storage, presence of tree canopies, thicker active layer, and greater expressed soil fissuring. Furthermore, the Birch effect was much less expressed in ultra-continental permafrost soils than in permafrost-free European soils. Models and field observations demonstrated that the areal human footprint on soil CO2 fluxes could be comparable to the effect of climate change within a similar timeframe. Settlements and industrial areas in the tundra function as year-round net CO2 sources, mostly owing to the lack of vegetation cover. As a result, they could compensate for the natural C-balance on significantly larger areas of surrounding tundra. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2020-09-01 DOI: 10.1016/j.geodrs.2020.e00290 ISSN: 2352-0094

With global warming, glaciers in the high mountains of China are retreating rapidly. However, few data have been reported on whether greenhouse gases from these glaciers are released into the atmosphere or absorbed by glacial meltwater. In this study, we collected meltwater and ice samples from Laohugou Glacier No. 12 in western China and measured CH4 and CO2 concentrations. Meltwater from the glacier terminus was continually sampled between 3 and 5 August 2020 to measure CH4 and CO2 concentrations. The results demonstrated that meltwater is a source of CH4 because the average saturations are over 100%. It could be concluded that CH4 in the atmosphere can be released by glacial meltwater. However, the CO2 saturations are various, and CO2 fluxes exhibit positive (released CO2) or negative (absorbed CO2) values because the water and atmospheric conditions are variable. More importantly, the CH4 and CO2 concentrations were higher in meltwater samples from the glacier terminus than in samples from the surface ice (including an ice core) and a surface stream. Although the meltwater effect from the upper part of the glacier cannot be excluded, we speculated that subglacial drainage systems with an anaerobic environment may represent the CH4 source, but it needs to be further investigated in the future. However, high mountain glaciers are currently ignored in global carbon budgets, and the increased melting of glaciers with global warming may accelerate the absorption of much more CO2 and lead to the release of CH4.

期刊论文 2020-03-01 DOI: http://dx.doi.org/10.1016/j.accre.2021.11.007 ISSN: 1674-9278
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共30条,3页