Background: The current focus is largely on whole course medical management of coronavirus disease-19 (COVID-19) with real-time polymerase chain reaction (RT-PCR) and radiological features, while the mild cases are usually missed. Thus, combination of multiple diagnostic methods is urgent to understand COVID-19 fully and to monitor the progression of COVID-19. Methods: laboratory variables of 40 mild COVID-19 patients, 30 patients with community-acquired pneumonia (CAP) and 32 healthy individuals were analyzed by principal component analysis (PCA), Kruskal test, Procrustes test, the vegan package in R, CCA package and receiver operating characteristic to investigate the characteristics of the laboratory variables and their relationships in COVID-19. Results: The correlations between the laboratory variables presented a variety of intricate linkages in the COVID-19 group compared with the healthy group and CAP patient group. The prediction probability of the combination of lymphocyte count (LY), eosinophil (EO) and platelets (PLT) was 0.847, 0.854 for the combination of lactate (LDH), creatine kinase isoenzyme (CK-MB), and C-reactive protein (CRP), 0.740 for the combination of EO, white blood cell count (WBC) and neutrophil count (NEUT) and 0.872 for the combination of CK-MB and P. Conclusions: The correlations between the laboratory variables in the COVID-19 group could be a unique characteristic showing promise as a method for COVID-19 prediction and monitoring progression of COVID-19 infection.
A comprehensive global investigation on the impact of reduction (changes) in aerosol emissions due to Coronavirus disease-2019 (COVID-19) lockdowns on aerosol single scattering albedo (SSA) utilizing satellite observations and model simulations is conducted for the first time. The absolute change in Ozone Monitoring Instrument (OMI) retrieved, and two highly-spatially resolved models (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated SSA is <4% (<0.04-0.05) globally during COVID (2020) compared to normal (2015-2019) period. Change in SSA during COVID is not significantly different from long-term and year-to-year variability in SSA. A small change in SSA indicates that significant reduction in anthropogenic aerosol emissions during COVID-19 induced lockdowns has a negligible effect in changing the net contribution of aerosol scattering and/or absorption to total aerosol extinction. The changes in species-wise aerosol optical depth (AOD) are examined in detail to explain the observed changes in SSA. Model simulations show that total AOD decreased during COVID-19 lockdowns, consistent with satellite observations. The respective contributions of sulfate and black carbon (BC) to total AOD increased, which resulted in a negligible change in SSA during the spring and summer seasons of COVID over South Asia. Europe and North America experience a small increase in SSA (<2%) during the summer season of COVID due to a decrease in BC contribution. The change in SSA (2%) is the same for a small change in BC AOD contribution (3%), and for a significant change in sulfate AOD contribution (20%) to total AOD. Since, BC SSA is 5-times lower (higher absorption) than that of sulfate SSA, the change in SSA remains the same. For a significant change in SSA to occur, the BC AOD contribution needs to be changed significantly (4-5 times) compared to other aerosol species. A sensitivity analysis reveals that change in aerosol radiative forcing during COVID is primarily dependent on change in AOD rather than SSA. These quantitative findings can be useful to devise more suitable future global and regional mitigation strategies aimed at regulating aerosol emissions to reduce environmental impacts, air pollution, and public health risks.
In this study, we evaluated the variations of air quality in Lanzhou, a typical city in Northwestern China impacted by the COVID-19 lockdown. The mass concentration and chemical composition of non-refractory submicron particulate matter (NR-PM1) were determined by a high-resolution aerosol mass spectrometer during January-March 2020. The concentration of NR-PM(1)dropped by 50% from before to during control period. The five aerosol components (sulfate, nitrate, ammonium, chloride, and organic aerosol [OA]) all decreased during the control period with the biggest decrease observed for secondary inorganic species (70% of the total reduction). Though the mass concentration of OA decreased during the control period, its source emissions varied differently. OA from coal and biomass burning remained stable from before to during control period, while traffic and cooking related emissions were reduced by 25% and 50%, respectively. The low concentration during the control period was attributed to the lower production rate for secondary aerosols.
The Tibetan Plateau holds the largest mass of snow and ice outside of the polar regions. The deposition of light-absorbing particles (LAPs) including mineral dust, black carbon and organic carbon and the resulting positive radiative forcing on snow (RFSLAPs) substantially contributes to glacier retreat. Yet how anthropogenic pollutant emissions affect Himalayan RFSLAPs through transboundary transport is currently not well known. The COVID-19 lockdown, resulting in a dramatic decline in human activities, offers a unique test to understand the transboundary mechanisms of RFSLAPs. This study employs multiple satellite data from the moderate resolution imaging spectroradiometer and ozone monitoring instrument, as well as a coupled atmosphere-chemistry-snow model, to reveal the high spatial heterogeneities in anthropogenic emissions-induced RFSLAPs across the Himalaya during the Indian lockdown in 2020. Our results show that the reduced anthropogenic pollutant emissions during the Indian lockdown were responsible for 71.6% of the reduction in RFSLAPs on the Himalaya in April 2020 compared to the same period in 2019. The contributions of the Indian lockdown-induced human emission reduction to the RFSLAPs decrease in the western, central, and eastern Himalayas were 46.8%, 81.1%, and 110.5%, respectively. The reduced RFSLAPs might have led to 27 Mt reduction in ice and snow melt over the Himalaya in April 2020. Our findings allude to the potential for mitigating rapid glacial threats by reducing anthropogenic pollutant emissions from economic activities.
Coronavirus disease (COVID-19) has disrupted health, economy, and society globally. Thus, many countries, including China, have adopted lockdowns to prevent the epidemic, which has limited human activities while affecting air quality. These affects have received attention from academics, but very few studies have focused on western China, with a lack of comparative studies across lockdown periods. Accordingly, this study examines the effects of lockdowns on air quality and pollution, using the hourly and daily air monitoring data collected from Lanzhou, a large city in Northwest China. The results indicate an overall improvement in air quality during the three lockdowns compared to the average air quality in the recent years, as well as reduced PM2.5, PM10, SO2, NO2, and CO concentrations with different rates and increased O3 concentration. During lockdowns, Lanzhou's morning peak of air pollution was alleviated, while the spatial characteristics remained unchanged. Further, ordered multi-classification logistic regression models to explore the mechanisms by which socioeconomic backgrounds and epidemic circumstances influence air quality revealed that the increment in population density significantly aggravated air pollution, while the presence of new cases in Lanzhou, and medium- and high-risk areas in the given district or county both increase the likelihood of air quality improvement in different degrees. These findings contribute to the understanding of the impact of lockdown on air quality, and propose policy suggestions to control air pollution and achieve green development in the post-epidemic era.
The unprecedented COVID-19 outbreak impacted the world in many aspects. Air pollutants were largely reduced in cities worldwide in 2020. Using samples from two snow pits dug separately in 2019 and 2020 in Urumqi Glacier No. 1 (UG1) in the Xinjiang Uygur Autonomous Region (Xinjiang), China, we measured water-stable isotopes, soluble ions, and black and organic carbon (BC and OC). Both carbon types show no significant variations in the snow-pit profiles dated from 2018 through 2020. The deposition of anthropogenically induced soluble ions (K+, Cl-, SO42-, and NO3-) in the snow decreased to 20-40% of their respective concentrations between 2019 and 2020; however, they increased 2- to fourfold from 2018 to 2019. We studied the daily concentrations of SO2 (2019-2020), NO2 (2015-2020), CO (2019-2020), and PM2.5 (2019-2020) measured in the sixteen major cities and towns across Xinjiang. The variabilities in these air pollutants were supposed to illustrate the air quality in the urban area and represent the change in the source area. The NO2 decreased in response to mobility restrictions imposed by local governments, while SO2, CO, and PM2.5 did not consistently correspond. This difference indicates that the restriction measures primarily affected traffic. The increases in chemical species in the snow from 2018 to 2019 and the subsequent decreases from 2019 to 2020 were consistent with the variations in SO2 and NO2 measured in urban air and estimated by MERRA-2 model. Therefore, the pandemic could possibly have an impact on snow chemistry of the Tien-Shan glaciers via reduced traffic and industrial intensity; more evidence would be obtained from ice cores, tree rings, and other archives in the future.
A nationwide lockdown was imposed in India due to the Coronavirus Disease 2019 (COVID-19) pandemic which significantly reduced the anthropogenic emissions. We examined the characteristics of equivalent black carbon (eBC) mass concentration and its source apportionment using a multiwavelength aethalometer over an urban site (Ahmedabad) in India during the pandemic induced lockdown period of year 2020. For the first time, we estimate the changes in BC, its contribution from fossil (eBC(ff)) and wood (eBC(wf)) fuels during lockdown (LD) and unlock (UL) periods in 2020 with respect to 2017 to 2019 (normal period). The eBC mass concentration continuously decreased throughout lockdown periods (LD1 to LD4) due to enforced and stringent restrictions which substantially reduced the anthropogenic emissions. The eBC mass concentration increased gradually during unlock phases (UL1 to UL7) due to the phase wise relaxations after lockdown. During lockdown period eBC mass concentration decreased by 35%, whereas during the unlock period eBC decreased by 30% as compared to normal period. The eBC(wf) concentrations were higher by 40% during lockdown period than normal period due to significant increase in the biomass burning emissions from the several community kitchens which were operational in the city during the lockdown period. The average contributions of eBC(ff) and eBC(wf) to total eBC mass concentrations were 70% and 30% respectively during lockdown (LD1 to LD4) period, whereas these values were 87% and 13% respectively during the normal period. The reductions in BC concentrations were commensurate with the reductions in emissions from transportation and industrial activities. The aerosol radiative forcing reduced significantly due to the reduction in anthropogenic emissions associated with COVID-19 pandemic induced lockdown leading to a cooling of the atmosphere. The findings in the present study on eBC obtained during the unprecedented COVID-19 induced lockdown can provide a comprehensive understanding of the BC sources and current emission control strategies, and thus can serve as baseline anthropogenic emissions scenario for future emission control strategies aimed to improve air quality and climate.
In the present study, we focused on the impact of lockdown on black carbon (eBC) mass concentrations and their associated radiative implications from 01st March to 30th June 2020, over a semi-arid station, i.e., in the district of Anantapur in Southern India. The mean eBC mass concentration was observed before lockdown (01st-24th March 2020) and during the lockdown (25th March-30th June 2020) period and was about 1.74 +/- 0.36 and 1.11 +/- 0.14 mu g m(-3), respectively. The sharp decrease (similar to 35%) of eBC mass concentration observed during the lockdown (LD) period as compared with before lockdown (BLD) period, was mainly due to the reduction of anthropogenic activities and meteorology. Furthermore, during the entire LD period, the net composite forcing at the top of the atmosphere (TOA) and at the surface (SUR) varied from -4.52 to -6.19 Wm(-2) and -22.91 to -29.35 Wm(-2), respectively, whereas the net forcing in the atmosphere (ATM) varied from 17.27 to 23.16 Wm(-2). Interestingly, the amount of energy trapped in the atmosphere due to eBC is 11.19 Wm(-2) before LD and 8.56 Wm(-2) during LD. It is concluded that eBC contributes almost 43-50% to the composite forcing. As a result, the eBC atmospheric heating rate decreased significantly (25%) when compared to before lockdown days to lockdown days.
The COVID-19 lockdown restrictions influenced global atmospheric aerosols. We report aerosol variations over India using multiple remote sensing datasets [Moderate Resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI), Cloud-Aerosol Lidar, and Infrared Pathfinder (CALIPSO)], and model reanalysis [Copernicus Atmosphere Monitoring Service (CAMS)] during the lockdown implemented during the COVID-19 pandemic outbreak period from March 25 to April 14, 2020. Our analysis shows that, during this period, MODIS and CALIPSO showed a 30-40% reduction in aerosol optical depth (AOD) over the Indo-Gangetic Plain (IGP) with respect to decadal climatology (2010-2019). The absorbing aerosol index and dust optical depth measurements also showed a notable reduction over the Indian region, highlighting less emission of anthropogenic dust and also a reduced dust transport from West Asia during the lockdown period. On the contrary, central India showed an similar to 12% AOD enhancement. CALIPSO measurements revealed that this increase was due to transported biomass burning aerosols. Analysis of MODIS fire data product and CAMS fire fluxes (black carbon, SO2, organic carbon, and nitrates) showed intense fire activity all over India but densely clustered over central India. Thus, we show that the lockdown restrictions implemented at the government level have significantly improved the air quality over northern India but fires offset its effects over central India. The biomass-burning aerosols formed a layer near 2-4 km (AOD 0.08-0.1) that produced heating at 3-4 K/day and a consequent negative radiative forcing at the surface of similar to-65 W/m(2) (+/- 40 W/m(2)) over the central Indian region.
The Indo Gangetic Plain (IGP), one of the most densely populated regions of the world, is a global hotspot of anthropogenic aerosol emissions. In the pre-monsoon season (March-May), the strong westerlies carry transported dust aerosols along with anthropogenic aerosols onto the Bay of Bengal (BoB). The outflow from IGP modulates the aerosol loading and the aerosol direct radiative forcing (ADRF) over the BoB. The quantification of the anthropogenic aerosol impact on the radiative forcing over the outflow region remains inadequate. The enforced shutdown amid the COVID-19 pandemic eased the anthropogenic activities across the country, which helped to examine the magnitude and variability of aerosol loading and subsequent changes in ADRF over IGP and the outflow region of the BoB. Wind trajectory analysis illustrates that the ADRF over the BoB is greater during the days when the winds originated from the IGP region (at the surface-54.2 +/- 6.4 Wm(-2), at the top of the atmosphere,-26.9 +/- 3.4 Wm(-2) and on the atmosphere, 27.0 +/- 3.1 Wm(-2)) compared to the seasonal average (-46.3 +/- 7.1 Wm(-2),-24.9 +/- 4.0 W m(-2) and 20.6 +/- 3.2 Wm(-2), respectively). This indicates that anthropogenic aerosols emission from IGP can contribute an additional 31% of the atmospheric ADRF over the IGP outflow region of the BoB. The reduced aerosol loading during the shutdown period resulted in a reduction of ADRF at the surface, at the top of the atmosphere, and on the atmosphere over the IGP outflow region of the BoB by 22.0 +/- 3.1%, 20.9 +/- 3.4% and 23.2 +/- 3.3%, respectively. This resultant 20-25% reduction in ADRF over the IGP outflow region of BOB matches well with 10-25% reduction in aerosol optical depth (AOD) over the IGP during the shutdown period showing a robust coupling between IGP aerosol emissions and ADRF over the BoB. (C) 2021 Elsevier B.V. All rights reserved.