Estimating the spatial distribution of hydromechanical properties in the investigated subsoil by defining an Engineering Geological Model (EGM) is crucial in urban planning, geotechnical designing and mining activities. The EGM is always affected by (i) the spatial variability of the measured properties of soils and rocks, (ii) the uncertainties related to measurement and spatial estimation, as well as (iii) the propagated uncertainty related to the analytical formulation of the transformation equation. The latter is highly impactful on the overall uncertainty when design/target variables cannot be measured directly (e.g., in the case of piezocone Cone Penetration Test-CPTu measurements). This paper focuses on assessing the Propagated Uncertainty (PU) when defining 3D EGMs of three CPTu-derived design/target variables: the undrained shear resistance (su), the friction angle ((p'), and the hydraulic conductivity (k). We applied the Sequential Gaussian Co-Simulation method (SGCS) to the measured profiles of tip (qc) and shaft resistance (fs), and the pore pressure (u2), measured through CPTus in a portion of Bologna district (Italy). First, we calculated 1000 realizations of the measured variables using SGCS; then, we used the available transformation equations to obtain the same number of realizations of su, (p', and k. The results showed that PU is larger when the transformation equation used to obtain the design/target variable is very complex and dependent on more than one input variable, such as in the case of k. Instead, linear (i.e., for su) or logarithmic (i.e., for (p') transformation functions do not contribute to the overall uncertainty of results considerably.
The study area, located in Martil, northern Morocco, lies in a region with high seismic risk, near a subduction zone. As a result, loose soils, such as sands, lose their shear strength under seismic loads due to an increase in pore water pressure, leading to deformations. The objective of this study is to assess the risk of soil liquefaction at the site where the Lalla Khadija High School will be constructed. The method used to evaluate the liquefaction risk is based on in-situ test results, as proposed by Seed and Idriss (J Soil Mech Found Div 97(9):1249-1273, 1971. https://doi.org/10.1061/JSFEAQ.0000981). Specifically, the liquefaction potential is assessed using data from the cone penetration test (CPT). This methodological approach combines a qualitative evaluation of susceptibility, which identifies the presence of fill materials and Plio-Quaternary sands-potentially liquefiable materials. At this stage, a quantitative evaluation of susceptibility is performed by calculating the safety factor, defined as the ratio between the normalized cyclic resistance ratio of the soil and the normalized cyclic stress ratio induced by the earthquake. The results of the CPT indicate that the normalized penetration resistance (qc1Ncs) consistently exceeds 160, which reflects sufficient soil strength. Consequently, the analysis confirms the absence of liquefaction risk in the sandy layers between depths of 1.8 m and 14 m. Therefore, the studied site has no liquefaction potential. This study has certain limitations. It relies solely on the method of Seed and Idriss (1971) to assess liquefaction risk, thereby restricting comparisons with alternative approaches. Additionally, the analysis focuses exclusively on the Lalla Khadija High School site, preventing extrapolation to the entire Martil plain. Nevertheless, by confirming the absence of liquefaction risk at this site, the study enables optimized foundation design, ensuring the stability of the infrastructure in the event of an earthquake. This contributes to occupant safety and improved seismic risk management in the region.
Large area civil engineering projects, such as offshore wind farms, require extensive soil investigations for detailed soil characterisations. Site-wide geotechnical soil units are commonly defined for simplification due to budgetary constraints. Consequently, practitioners rely on a limited number of costly laboratory tests and a set of semi-empirical CPT correlations, predominantly established based on research sands, for deriving sand parameters. A recent publication by the authors highlights some valid concerns about currently often applied idealisation when deriving strength parameters of natural sands and presents some possible pathways to address the limitations with a grading curve parameter (d10+d30). In the current paper, the size of the original laboratory test database is increased to improve the robustness of the methods. In addition, the database is used to also explore the potential of the d10+d30-parameter to improve estimations of drained stiffness parameters. However, since the current database mainly consists of relatively fine sands with varying fines content, a previously published database of much coarser clean sands is applied to investigate the limitations of the presented methods. Finally, a new independent trial database is collected to demonstrate the performance of the new methods for estimating drained strength and stiffness parameters compared with commonly applied industry-acknowledged methods. Even though limitations of the presented methods are identified for coarser clean sands, significantly improved reliability is demonstrated when deriving drained strength and stiffness parameters of relatively fine and slightly silty to very silty siliceous offshore sands.
Most natural soils exhibit a certain degree of soil structure which, in general, leads to increased strength and stiffness properties. However, the mechanical characterization of these soils based on conventional laboratory testing proves difficult in many cases due to sample disturbance. The present work aims to characterize the microstructure of a postglacial, normally consolidated, fine-grained deposit in Seekirchen, Austria, adopting in situ testing, laboratory testing on high-quality samples, and numerical analysis. The latter involves recalculating in situ piezocone penetration tests (CPTu) using an advanced constitutive model for structured soil. In contrast to existing in situ interpretation methods, the results of the numerical study, the mineralogical and hydrochemical testing, as well as the oedometer and bender element testing on undisturbed and reconstituted samples suggest that the soil is characterized by a significant amount of structure. It is demonstrated that the difference in shear wave velocity measured in situ and through bender element testing on reconstituted samples can be used as an indicator for soil structure. Ignoring the effects of structure may lead to inaccurate parameter determination for advanced constitutive models, which are subsequently employed to solve complex boundary value problems in geotechnical practice. As a consequence, the prediction of expected displacement may not be reliable.
Two earthquakes, Mw = 7.8 Kahramanmaras,-Pazarcik, and Mw = 7.6 Elbistan, occurred on February 6, 2023, approximately 9 h apart. These earthquakes caused devastating effects in a total of 11 nearby cities on the east side of T & uuml;rkiye (Adana, Adiyaman, Diyarbakir, Elazig, Gaziantep, Hatay, Kahramanmaras,, Kilis, Malatya, Osmaniye, and S,anliurfa) and the north side of Syria. These earthquakes provided an outstanding prospect to observe the effects of liquefaction in silty sand and liquefaction-like behavior in clays (cyclic softening) on the stability of structures. This paper specifically presents the post-earthquake reconnaissance at three sites and evaluations of four buildings within these sites in Adiyaman Province, Golbas, i District. First, important role of post-earthquake piezocone penetration test (CPTu) in characterizing the subsurface conditions was presented. Then, the effect of soil liquefaction and cyclic softening on the performance of four buildings during the earthquakes was evaluated. These structures represent the typical new reinforced concrete buildings in T & uuml;rkiye with 3 to 6-story, situated on shallow (raft) foundations, and demonstrated diverse structural performances from full resilience to moderate and extensive damage during the aforementioned earthquakes. Based on the interim findings from these sites, the potential factors that caused moderate to severe damage to buildings were inspected, and preliminary-immediate insights were presented on the relationship between structural design, soil properties, and the performance of buildings with shallow foundations.
The properties of soils are highly complex, and therefore, the classification system should be based on multiple perspectives of soil properties to ensure effective classification in geotechnical engineering. The current study of research demonstrates a lack of correlation between classification systems based on soil plasticity and those based on in-situ mechanical properties of soils. A CPTu-based plasticity classification system is proposed using the soil behaviour type index (Ic), with its reliability and limitations discussed. The results indicate that (1) Ic has the capacity to predict the stratigraphic distribution from the in-situ mechanical properties of soils. It showed a significant linear correlation with wL, which soil classification zone was similar to that of clay factor (CF); (2) A CPTu-plasticity classification system is proposed to characterize both plasticity and in-situ mechanical properties of soils. This system allows for the initial classification of soils solely based on CPTu data. Furthermore, it has been established that Ic = 2.95 can delineate the boundary between high- and low-compressibility soils. (3) The error is only 25.2% relative to the Moreno-Maroto classification chart, and the system tends to classify soils of intermediate nature as clay or silt. The distance between the data points and both the C-line and the new C-line (Delta Ip, Delta IpIc) showed a significant positive correlation. Only one data point was misclassified, considering human error in measuring Ip. (4) The new classification chart has been found to be more applicable to offshore and marine soils.
The Yellow River Delta is covered with a large number of pipelines, but due to the complex soil composition in the region, ensuring that pipelines are not damaged by soil liquefaction is an important issue at present. Based on the simplified method of the cone penetration test (CPT), the sequential Gaussian simulation (SGS) can probabilistically simulate the liquefaction potential index (LPI) in the study area to solve the problem of the smoothing effect occurring in the kriging method. In this study, 10 experiments were conducted in the Yellow River Delta to evaluate soil liquefaction within the site using uncertainty analysis by the SGS method. The results indicate that (1) All LPI values in the study area are less than 5, with an overall sub-moderate liquefaction potential. (2) The results of the variogram model show that the Gaussian function model has the best fit with a Root Mean Squared Error of 0.429. The results of the e-type simulation realizations illustrate that the soils around the three sites S1, S5, and S10 exhibit high LPI values, distributed in a band in the middle of the western and eastern parts of the site. (3) Uncertainty analysis was performed using LPI = 2 as a threshold to explore the distribution of areas of moderate liquefaction potential and areas of low liquefaction potential in the study area. (4) Improvements were made to address the current problem of inappropriate values of liquefaction thresholds and the lack of medium liquefaction potential thresholds by proposing when LPI = 20 as the liquefaction threshold, LPI = 10 and 16 as the thresholds for low liquefaction potential, medium liquefaction potential and high liquefaction potential.
Soil disturbance and excess pore water pressure generation, induced by dynamics and transient excitations such as pile driving, seismic loading, and impact effects, can significantly degrade the geotechnical strength and stiffness. Given the critical importance of axial capacity in sustaining superstructures, it is essential to recognize and mitigate potential damages. This research investigates the piles reduction of axial capacity through CPTu records, which offer rapid and reliable data. Aiming to quantify the consequences of soil sensitivity and excess pore water pressure, a comprehensive dataset has been compiled comprising CPTu and pile performance records from 11 diverse sites worldwide, focusing on soft and loose deposits. The research identifies problematic sublayers and, by incorporating an analytical approach, evaluates the intact and reduced shaft and toe resistance through three distinct methods. Results indicate a substantial reduction in bearing capacity due to dynamic loading on piles. Four levels of capacity loss concern are recognized quantitively. Through case studies, the response of the problematic deposit under dynamic loading is more apprehended, conforming with the findings. The current research addresses and emphasizes the necessity of realizing pile dynamics and problematic deposit interaction. It can lead to safe, reliable, and optimal design practices based on a comprehensive understanding of soil-pile interaction.
The overconsolidation ratio considerably affects the physical and mechanical properties of soil as well as the interaction between structures and soil. Scale and consolidation time limitations render the preparation of overconsolidated soil for small-scale model tests difficult. Therefore, studying structure-soil interactions, especially the vertical bearing capacity of pile foundations in overconsolidated soil becomes challenging. Given the importance of reliable overconsolidated soil in physical model tests for studying soil-structure interactions, this study, based on the fundamental of the overconsolidation ratio, established a reliable method for preparing overconsolidated soil by altering centrifuge acceleration. Piezocone penetration tests were conducted to validate the accuracy of this method. Furthermore, vertical bearing capacity of pile foundations was evaluated in various overconsolidated soils. The vertical ultimate bearing capacity of pile foundations, cone penetration resistance, pore water pressure, and sleeve friction resistance were obtained in soils with various overconsolidation ratios. Based on the results of both tests, a formula was developed to calculate the vertical ultimate bearing capacity of pile foundations, taking into account the overconsolidation ratio of soil. This proposed method for evaluating vertical bearing capacity of pile foundations in overconsolidated soil can also be applied to study interactions between other marine structures and soil. The results of the study can provide technical support for designing the foundations of offshore oil and gas facilities, wind power, and other structures.
The generation of negative excess pore water pressure (u2) during cone penetration test (CPT) in a given environment represents a deviation from the actual situation, thereby affecting the accuracy of the parameter inversion. Dissipation tests have been conducted to ascertain the dissipation of the u2 over time, which in turn allows for the parameters to be corrected. However, the tip resistance (qc) and sleeve friction resistance (fs) in dissipation process also vary with time, despite its potential impact on the inversion process. In this paper, the evolution of qc and negative u2 with time is successfully obtained through the utilization of indoor CPTs on silt soils. In conjunction with a viscoelastic model, the existence of stress relaxation of qc is demonstrated and the causes of qc decay are analyzed. The detailed conclusions are as follows: (1) The CPT parameters obtained from the dissipation test can be employed to rectify the discrepancy in negative u2 that arises during soil classification. (2) The qc undergoes a gradual decrease, reaching a final equilibrium state during the dissipation process. The stress-time relationship is consistent with the Three-element viscoelasticity model, which represents a stress relaxation phenomenon. The relaxation process can be divided into three distinct phases: fast relaxation, decelerating relaxation, and residual relaxation. The residual stress is found to be correlated with the depth of the soil layer. (3) During residual phase, the loss rate of qc is observed to decrease in a linear fashion with the rate of u2, prior to which the relationship is exponential. As the penetration rate increases, the rate of u2 also increases.