The Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Nunavut (74 degrees 55 ' N, 109 degrees 34 ' W) was established in 2003 to examine Arctic ecosystem processes that would be impacted by climate warming and permafrost degradation. This paper provides a synthesis of how remote sensing has contributed to biogeophysical modelling and monitoring at the CBAWO from 2003 to 2023. Given the location and isolated nature of the CBAWO in the Canadian High Arctic, remote sensing data and derivatives have been instrumental for studies examining ecosystem structure and function at local and landscape scales. In combination with field measurements, remote sensing data facilitated mapping and modelling of vegetation types, % vegetation cover and aboveground phytomass, soil moisture, carbon exchange rates, and permafrost degradation and disturbance. It has been demonstrated that even in an environment with limited vegetation cover and phytomass, spectral vegetation indices (e.g., the normalized difference vegetation index) are able to model various biogeophysical variables. These applications are feasible for research sites such as the CBAWO using high spatial resolution remote sensing data across the visible, infrared, and microwave regions of the electromagnetic spectrum. Furthermore, as the satellite record continues to expand, we will gain a greater understanding of the impacts arising from the expected continued warming at northern latitudes. Although the logistics for research in the Arctic remain challenging, today's technologies (e.g., high spatial resolution satellite remote sensing, automated in situ sensors and data loggers, and wireless communication systems) can support a host of scientific endeavours in the Arctic (and other remote sites) through modelling and monitoring of biogeophysical variables and Earth surface processes with limited but critical field campaigns. The research synthesized here for the CBAWO highlights the essential role of remote sensing of terrestrial ecosystems in the Canadian Arctic.
Ground surface and permafrost temperatures in the High Arctic are often considered homogeneous especially when viewed at the scale of climate and environmental models. However, this is generally incorrect due to highly variable, topographically redistributed snow cover, which generates a substantial degree of ground thermal heterogeneity. The objective of this study is to describe and spatially model the variability in the ground thermal regime within the Cape Bounty Arctic Watershed Observatory (CBAWO), Nunavut, Canada, using the TTOP model, for current conditions in addition to a series of future climate change scenarios. While observed air temperature was mostly uniform, annual mean ground surface and permafrost temperatures across the paired watersheds were estimated to range between -3.8 to -13.8 degrees C and -3.9 to -14 degrees C, respectively, similar to the -5 to -15 degrees C magnitude and range identified from boreholes across the High Arctic. The spatial models showed higher ground surface temperatures in topographic hollows (slope bases and stream channels), and lower temperatures in areas of topographic prominence (hilltops and plateaus) following the spatial pattern of snow accumulation and redistribution. Under projected climate change, the models predicted areas with the coldest permafrost to have the largest magnitude of warming (about 9 degrees C), while areas of warm permafrost became closer to 0 degrees C (warming 4-7 degrees C). This thermal heterogeneity may have implications for ground instability such as permafrost-related mass movements, hydrological connectivity, biogeochemical cycling, and microbial activity, which influence water quality and contaminant mobility.
Arctic warming may induce slope failure in upland permafrost soils. These landslide-like events, referred to as active layer detachments (ALDs), redistribute soil material into hydrological networks during spring melt and heavy rainfall. In 2011, 2013 and 2014, fluvial sediments from the West River at the Cape Bounty Arctic Watershed Observatory were sampled where ALDs occurred in 2007-2008. Two ALD-impacted subcatchments were examined exhibiting either continuing disturbance or short-term stabilization. Solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy and targeted biomarker analysis via gas chromatography-mass spectrometry were used to investigate shifts in organic matter (OM) composition. Additionally, radiocarbon ages were determined using accelerator mass spectrometry. Biomarker concentrations and O-alkyl carbon assessed via NMR were both lower in sediments nearest the active disturbance and increased in sediments downstream where other aquatic inputs became more dominant. This suggests immobilization of recalcitrant OM near the ALD and the sustained transport of labile ALD-derived OM further downstream. Shifts toward older radiocarbon dates along the river between 2011 and 2014 suggest the continued transport of permafrost-derived OM downstream. The stabilizing subcatchment revealed high O-alkyl carbon via NMR and increased concentrations of unaltered terrestrial-derived biomarkers indicative of enhanced OM accumulation following ALD activity. The relatively young radiocarbon ages from these sediments suggest accumulation from contemporary sources and potential burial of the previously dispersed ALD inputs. Within the broader context of Arctic climate change, these results portray a complex environmental trajectory for thaw-released permafrost-derived OM and highlight uncertainty in the relationship between lability and persistence upon release by permafrost disturbance. (C) 2018 Elsevier Ltd. All rights reserved.
With increased warming in the Arctic, permafrost thaw may induce localized physical disturbance of slopes. These disturbances, referred to as active layer detachments (ALDs), redistribute soil across the landscape, potentially releasing previously unavailable carbon (C). In 2007-2008, widespread ALD activity was reported at the Cape Bounty Arctic Watershed Observatory in Nunavut, Canada. Our study investigated organic matter (OM) composition in soil profiles from ALD-impacted and undisturbed areas. Solid-state C-13 nuclear magnetic resonance (NMR) and solvent-extractable biomarkers were used to characterize soil OM. Throughout the disturbed upslope profile, where surface soils and vegetation had been removed, NMR revealed low O-alkyl C content and biomarker analysis revealed low concentrations of solvent-extractable compounds suggesting enhanced erosion of labile-rich OM by the ALD. In the disturbed downslope region, vegetation remained intact but displaced material from upslope produced lateral compression ridges at the surface. High O-alkyl content in the surface horizon was consistent with enrichment of carbohydrates and peptides, but low concentrations of labile biomarkers (i.e., sugars) suggested the presence of relatively unaltered labile-rich OM. Decreased O-alkyl content and biomarker concentrations below the surface contrasted with the undisturbed profile and may indicate the loss of well-established pre-ALD surface drainage with compression ridge formation. However, pre-ALD profile composition remains unknown and the observed decreases may result from nominal pre-ALD OM inputs. These results are the first to establish OM composition in ALD-impacted soil profiles, suggesting reallocation of permafrost-derived soil C to areas where degradation or erosion may contribute to increased C losses from disturbed Arctic soils.