Snow distribution has been altered over the past decades under global warming, with a significant reduction in duration and extent of snow cover and an increase in unprecedented snowstorms across large areas in cold regions. The altered snow conditions are likely to have immediate (in winter) and carry-over or legacy (which an extended effect might continue in the following spring, summer and autumn) impacts on soil processes and functioning, but a quantification of the legacy effect of snow coverage alternation is still lacking. Furthermore, studies investigating the effect of snow cover changes on soil respiration, soil carbon pools and microbial activity are increasing, but contrasting results of different studies makes it difficult to assess the overall effect of snow cover changes and the underlying mechanisms, thus a systematic and comprehensive meta-analysis is required. In this study, we synthesized the results from 60 papers based on field snow manipulation experiments and conducted a meta-analysis to evaluate immediate and prolonged effects on eight variables related to soil carbon dynamics and microbial activity to snow coverage alternation. Results showed that snow removal had no significant effect on soil respiration, but increased dissolved organic carbon (DOC) (11.5%) and fungal abundance (32.0%). By contrast, snow addition significantly increased soil respiration (16.3%) and microbial biomass carbon (MBC) (6.6%). Snow addition had immediate and prolonged impacts on soil carbon dynamics and microbial activity lasting from winter to the following autumn, whereas an effect of snow removal on total organic carbon (TOC) and DOC was detectable only in the following spring. Snow depth, ecosystem and soil types determined the extent of the impact of snow treatments on soil respiration, DOC, MBC and microbial biomass nitrogen (MBN). Our findings provide critical insights into understanding how changes in snow coverage affect soil respiration and microbial activity. We suggest future field-based experiments to enhance our understanding the effect of climate change on soil processes and functioning in the winter and the following seasons.
Arctic and boreal permafrost soil organic carbon (SOC) decomposition has been slower than carbon inputs from plant growth since the last glaciation. Anthropogenic climate warming has threatened this historical trend by accelerating SOC decomposition and altering wildfire regimes. We accurately modeled observed plant biomass and carbon emissions from wildfires in Alaskan ecosystems under current climate conditions. In projections to 2300 under the RCP8.5 climate scenario, we found that warming and increased atmospheric CO2 will result in plant biomass gains and higher litterfall. However, increased carbon losses from (a) wildfire combustion and (b) rapid SOC decomposition driven by increased deciduous litter production, root exudation, and active layer depth will lead to about 4.4 PgC of soil carbon losses from Alaska by 2300 and most (88%) of these loses will be from the top 1 m of soil. These SOC losses offset plant carbon gains, causing the ecosystem to transition to a net carbon source after 2200. Simulations excluding wildfire increases yielded about a factor of four lower SOC losses by 2300. Our results show that projected wildfire and its direct and indirect effects on plant and soil carbon may accelerate high-latitude soil carbon losses, resulting in a positive feedback to climate change.
Carbon-climate feedback is sensitive in the Qinghai-Tibet Plateau. A series of temporal measurements from Jinsha River and Yalong River, in conjunction with flow information, were used to study the carbon dynamics and predict future carbon fluxes under ongoing climate change. DIC and DOC concentrations showed considerable temporal variations, with low DIC and high DOC concentrations in the high-flow season, and vice versa. DIC and DOC concentrations had negative and positive relationships with runoff changes, respectively, showing the hydro-biogeochemical controls on carbon dynamics. With the increase of runoff, the accelerated chemical weathering and the high carbonate buffering capacity should be responsible for the chemostatic behaviors of DIC. Meanwhile, warm weather would enhance organic carbon degradation, and also thicken the active layer of permafrost in the source area, both of which would produce DOC. In addition, organic carbon degradation in the high-flow season would produce DIC with C-13-depleted values. delta C-13(DIC) also had significant temporal variations, synchronous with runoff changes (i.e., light values under high runoff conditions), supporting that biological carbon plays an important role in carbon dynamics during the warm season. Based on the clear positive correlations between carbon fluxes and runoff, we predicted that the sensitivities of DOC fluxes to temperature changes are 12.2%/degrees C and 8.3%/degrees C for the Jinsha River and Yalong River, respectively. The sensitivities of DIC fluxes to temperature changes are much lower, which are 5.5%/degrees C and 6.1%/degrees C for the Jinsha River and Yalong River, respectively. This study sheds lights on the alpine riverine carbon cycling based on runoff-shifting concentration-isotope (q-C-I) relationships in the Qinghai-Tibet Plateau, which has implications on the understanding of climate forcing on carbon fluxes in alpine areas.
How methane (CH4) fluxes from alpine peatlands, especially during freeze-thaw cycles, affect the global CH4 budget is poorly understood. The present research combined the eddy covariance method, incubation experiments and high-throughput sequencing to observe CH4 flux from an alpine fen during thawing-freezing periods over a period of four years. The response of CH4 production potential and methanogenic archaea to climate change was analyzed. We found a relatively high mean annual cumulative CH4 emission of 37.7 g CH4-C m(-2). The dominant contributor to CH4 emission was the thawing period: warmer, longer thawing periods contributed 69.1-88.6% to the annual CH4 budget. Non-thawing periods also contributed, with shorter frozen-thawing periods accounting for up to 18.5% and shorter thawing-freezing periods accounting for up to 8.8%. Over the course of a year, emission peaked in the peak growing season and at onset of thawing and freezing. In contrast, emission did not vary substantially during the frozen period. Daily mean emission was highest during the thawing period and lowest during the frozen period. Diurnal patterns of CH4 emission were similar among the four periods, with peaks ranging from 12:00 to 18:00 and the lowest emission around 00:00. Water table and temperature were the dominant factors controlling CH4 emissions during different thawing-freezing periods. Our results suggest that CH4 emission from peatland will change substantially as CH4 production, microbial composition, and patterns of thawing-freezing cycles change with global warming. Therefore, frequent monitoring of CH4 fluxes in more peatlands and in situ monitoring of methanogenesis and related microbes are needed to provide a clear picture of CH4 fluxes and the thawing-freezing processes that affect them.
An ecosystem model, ecosys, has been used to examine the effects of recent warming on carbon exchange in higher latitudes of North America. Model results indicated that gradual warming during the past 30 years has increased net ecosystem productivity (NEP) and leaf area index (LAI). Spring increases in LAI advanced by 2.3 days decade(-1) and decreases in autumn were delayed by 5.0 days decade(-1) from 1982 to 2006. These advances and delays were corroborated by similar trends observed in the normalized difference vegetation index. NEP modelled during this period increased at an average rate of 17.6 Tg C decade(-1). Increasing carbon losses modelled with soil warming in autumn, when thaw depth was greatest, offset 34% of increasing carbon gains modelled in spring. If autumn warming continues, carbon losses in this season may further offset enhanced carbon sequestration in spring.
World soils and terrestrial ecosystems have been a source of atmospheric abundance of CO2 ever since settled agriculture began about 10-13 millennia ago. The amount of CO2-C emitted into the atmosphere is estimated at 136 +/- 55 Pg from terrestrial ecosystems, of which emission from world soils is estimated at 78 +/- 12 Pg. Conversion of natural to agricultural ecosystems decreases soil organic carbon (SOC) pool by 30-50% over 50-100 years in temperate regions, and 50-75% over 20-50 years in tropical climates. The projected global warming, with estimated increase in mean annual temperature of 4-6 degrees C by 2100, may have a profound impact on the total soil C pool and its dynamics. The SOC pool may increase due to increase in biomass production and accretion into the soil due to the so-called CO2 fertilization effect, which may also enhance production of the root biomass. Increase in weathering of silicates due to increase in temperature, and that of the formation of secondary carbonates due to increase in partial pressure of CO2 in soil air may also increase the total C pool. In contrast, however, SOC pool may decrease because of: (i) increase in rate of respiration and mineralization, (ii) increase in losses by soil erosion, and (iii) decrease in protective effects of stable aggregates which encapsulate organic matter. Furthermore, the relative increase in temperature projected to be more in arctic and boreal regions, will render Cryosols under permafrost from a net sink to a net source of CO2 if and when permafrost thaws. Thus, SOC pool of world soils may decrease with increase in mean global temperature. In contrast, the biotic pool may increase primarily because of the CO2 fertilization effect. The magnitude of CO2 fertilization effect may be constrained by lack of essential nutrients (e.g., N, P) and water. The potential of SOC sequestration in agricultural soils of Europe is 70-190 Tg C yr(-1). This potential is realizable through adoption of recommended land use and management, and restoration of degraded soils and ecosystems including wetlands.