共检索到 474

Conventional materials necessitate a layer-by-layer rolling or tamping process for subgrade backfill projects, which hampers their utility in confined spaces and environments where compaction is challenging. To address this issue, a self-compacting poured solidified mucky soil was prepared. To assess the suitability of this innovative material for subgrade, a suite of performance including flowability, bleeding rate, setting time, unconfined compressive strength (UCS), and deformation modulus were employed as evaluation criteria. The workability and mechanical properties of poured solidified mucky soil were compared. The durability and solidification mechanism were investigated. The results demonstrate that the 28-day UCS of poured solidified mucky soil with 20% curing agent content reaches 2.54 MPa. The increase of organic matter content is not conducive to the solidification process. When the curing temperature is 20 degrees C, the 28-day UCS of the poured solidified mucky soil with curing agent content not less than 12% is greater than 0.8 MPa. The three-dimensional network structure formed with calcium silicate hydrate, calcium aluminate hydrate, and ettringite is the main source of strength formation. The recommended mud moisture content is not exceed 85%, the curing agent content is 16%, and the curing temperature should not be lower than 20 degrees C.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2508345 ISSN: 1029-8436

Earthquakes are common geological disasters, and slopes under seismic loading can trigger coseismic landslides, while also becoming unstable due to accumulated damage caused by the seismic activity. Reinforced soil slopes are widely used as seismic-resistant geotechnical systems. However, traditional geosynthetics cannot sense internal damage in reinforced soil systems, and existing in-situ distributed monitoring technologies are not suitable for seismic conditions, thus limiting accurate post-earthquake stability assessments of slopes. This study presents, for the first time, the use of a batch molding process to fabricate self-sensing piezoelectric geogrids (SPGG) for distributed monitoring of soil behavior under seismic conditions. The SPGG's reinforcement and damage sensing abilities were verified through model experiments. Results show that SPGG significantly enhances soil seismic resistance and can detect soil failure locations through voltage distortions. Additionally, the tensile deformation of the reinforcement material can be quantified with sub-centimeter precision by tracking impedance changes, enabling high-precision distributed monitoring of reinforced soil under seismic conditions. Notably, when integrated with wireless transmission technology, the SPGG-based monitoring system offers a promising solution for real-time monitoring and early warning in road infrastructure, where rapid detection and response to seismic hazards are critical for mitigating catastrophic outcomes.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.05.007 ISSN: 0266-1144

The root-knot nematode, Meloidogyne javanica, is one of the most damaging plant-parasitic nematodes, affecting chickpea and causing substantial yield losses worldwide. The damage potential and population dynamics of this nematode in chickpea in Ethiopia have yet to be investigated. In this study, six chickpea cultivars were tested using 12 ranges of initial population densities (Pi) of M. javanica second-stage juveniles (J2): 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 and 128 J2 (g dry soil)-1 in a controlled glasshouse pot experiment. The Seinhorst yield loss and population dynamics models were fitted to describe population development and the effect on different measured growth variables. The tolerance limit (TTFW) for total fresh weight ranged from 0.05 to 1.22 J2 (g dry soil)-1, with corresponding yield losses ranging from 31 to 64%. The minimum yield for seed weight (mSW) ranged from 0.29 to 0.61, with estimated yield losses of 71 and 39%. The 'Haberu' and 'Geletu' cultivars were considered good hosts, with maximum population densities (M) of 16.27 and 5.64 J2 (g dry soil)-1 and maximum multiplication rate (a) values of 6.25 and 9.23, respectively. All other cultivars are moderate hosts for M. javanica; therefore, it is crucial to initiate chickpea-breeding strategies to manage the tropical root-knot nematode M. javanica in Ethiopia.

期刊论文 2025-12-01 DOI: 10.1163/15685411-bja10371 ISSN: 1388-5545

Gunung Bromo Education Forest is a forest that functions as a buffer area to maintain the balance of the surrounding area. However, the undulating to hilly topography, the presence of rivers, and land management for annual crops can make the area vulnerable to erosion-induced degradation. This research aims to analyze and classify the erosion hazard level in Gunung Bromo Education Forest and analyze the relationship between research parameters and erosion in Gunung Bromo Education Forest. Erosion was predicted using the MUSLE method. This research used an explorative-descriptive method incorporating a survey and laboratory analysis. Furthermore, data analysis used was Analysis of Variance (ANOVA), Duncan's Multiple Range Test (DMRT) at a 5% significance level, and Pearson correlation test. The results showed that Gunung Bromo Education Forest erosion ranged from 0.025 to 78.36 t ha(-1)y(-1). The erosion hazard level in Gunung Bromo Education Forest is in the very light to heavy class and is dominated by the light class. The factors of erosivity (R), erodibility (K), slope (LS), and crop management (C) are positively correlated with erosion values. The conservation factor (P) is negatively correlated with erosion values. Making remedial efforts according to the erosion hazard level is important to avoid greater damage.

期刊论文 2025-12-01 ISSN: 1394-7990

Biogrouting has been proposed for improving mechanical properties of soils and rocks, whose performance greatly depends on the location of biocement at pore-scale. To enhance the performance of biogrouting, many strategies were proposed, including the addition of assistants, controlling curing moisture degree, and flocculation of bacteria. Clay is one such assistant which has been proven to be effective, with an assumption of increasing active biocement, i.e. those located between soil particles. In this work, we employed microfluidics to directly observe whether clay minerals can certainly control the location of precipitates and how they function. First of all, the capacity of bentonite and kaolin for adsorbing bacteria were investigated. Then, the location of CaCO3 crystals with and without clay minerals were visually observed using microfluidics. Pore-filling ratios and CaCO3 ratios, which are closely related to permeability and strength of biocemented soils, were quantitatively analyzed from collected images. Finally, the effects of bentonite and kaolin and their dosages on the location of biocement were comprehensively discussed. The results demonstrated that the performance of bentonite and kaolin on adsorbing bacteria and regulating biocement location is distinct due to differences in the morphologies of clays. These findings can help us to improve biogrouting performance on soil stabilization and propose new strategies in various practical applications, such as CO2 sequestration, heavy metal remediation, and oil recovery enhancement, all with a foundational understanding of their mechanisms.

期刊论文 2025-09-15 DOI: 10.1016/j.clay.2025.107860 ISSN: 0169-1317

Friction characteristics are critical mechanical properties of clay, playing a pivotal role in the structural stability of cohesive soils. In this study, molecular dynamics simulations were employed to investigate the shear behavior of undrained montmorillonite (MMT) nanopores with varying surface charges and interlayer cations (Na+, K+, Ca2+), subjected to different normal loads and sliding velocities. Consistent with previous findings, our results confirm that shear stress increases with normal load. However, the normal load-shear stress curves reveal two distinct linear regions, indicating segmented friction behavior. Remarkably, the friction coefficient declines sharply beyond a critical pressure point, ranging from 5 to 7.5 GPa, while cohesion follows an inverse trend. The elevated friction coefficient at lower pressures is attributed to the enhanced formation of hydrogen bonds and concomitant changes in density distribution. Furthermore, shear strength was observed to increase with sliding velocities, normal loads, and surface charges, with Na-MMT exhibiting superior shear strength compared to KMMT and Ca-MMT. Interestingly, the friction coefficient shows a slight decrease with increasing surface charge, while ion type exerts a minimal effect. In contrast, cohesion is predominantly influenced by surface charge and remains largely unaffected by ion type, except under extreme pressures and velocities.

期刊论文 2025-09-01 DOI: 10.1016/j.apsusc.2025.163382 ISSN: 0169-4332

The present paper sets out a comparative analysis of carbon emission and economic benefit of different performance gradients solid waste based solidification material (SSM). The macro properties of SSM were the focus of systematic study, with the aim of gaining deeper insight into the response of the SSM to conditions such as freeze-thaw cycles, seawater erosion, dry-wet cycles and dry shrinkage. In order to facilitate this study, a range of analytical techniques were employed, including scanning electron microscopy (SEM), X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP). The findings indicate that, in comparison with cement, the carbon emissions of SSM (A1) are diminished by 77.7 %, amounting to 190 kg/t, the carbon-performance ratio (24.4 kg/ MPa), the cost-performance ratio (32.1RMB/MPa) and the carbon-cost ratio (0.76kg/RMB) are reduced by 86 %, 56 % and 68 % respectively. SSM demonstrated better performance in terms of freeze-thaw resistance, seawater erosion resistance and dry-wet resistance when compared to cement. The dry shrinkage value of SSM solidified soil was reduced by approximately 35 % at 40 days compared to cement solidified soil, due to compensatory shrinkage and a reduction in pores. In contrast to the relatively minor impact of seawater erosion and the moderate effects of the wet-dry cycle, freeze-thaw cycles have been shown to cause the most severe structural damage to the micro-structure of solidified soil. The conduction of durability tests resulted in increased porosity and the most probable aperture. The increase in pores and micro-structure leads to the attenuation of macroscopic mechanical properties of SSM solidified soil. The engineering application verified that with the content of SSM of 50 kg/m, 4.5 % and 3 %, the strength, bearing capacity and bending value of SSM modified soil were 1.9 MPa, 180 kPa and 158, respectively in deep mixing piles, shallow in-situ solidification, and roadbed modified soil field.

期刊论文 2025-09-01 DOI: 10.1016/j.mtsust.2025.101135 ISSN: 2589-2347

Subway subgrades typically consist of alternating deposits of soil layers with significantly different physical and mechanical properties. However, the overall dynamic characteristics and the evolution of micro-porous structures in stratified soils is often overlooked in current studies. In this study, cyclic triaxial tests were conducted on homogeneous sand, silt and stratified soils with different height ratios, and nuclear magnetic resonance (NMR) was used to investigate the changes in pore structure and moisture content. The dynamic behavior and macroscopic deformation mechanisms were systematically investigated in terms of stress amplitude, confining pressure, and layer height ratio (the ratio of sand to silt height). The results show that as the sand height ratio increases, the axial strain and pore water pressure first increase and then decrease, reaching the maximum when h(Sand): h(Silt) = 2:1. When the confining pressure is 100 kPa, the axial strain of h(Sand): h(Silt) = 2:1 is 181.08 % higher than that of silt. Under the dynamic loading, the stratified soils form a dense skeletal structure near the stratification plane, which hinders the flow and dissipation of pore water, so that the pore water agglomeration phenomenon occurs near the stratification plane, which aggravates the accumulation of residual pore pressure and reduces the deformation resistance. However, when h(Sand): h(Silt) = 4:1, the influence of the stratification planes is significantly reduced, and the deformation characteristics approach homogeneity. This study reveals the dynamic characteristics of stratified soils by comparing and analysing homogeneous samples.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109509 ISSN: 0267-7261

Seismic fragility denotes the probabilities of a system exceeding some prescribed damage levels under a range of seismic intensities. Classical seismic fragility studies in slope engineering usually construct fragility functions by making some assumptions for fragility curve shape, and always neglect spatial variability of soil materials. In this study, an assumption-free method on the basis of probability density evolution theory (PDET) is proposed for seismic fragility assessment of slopes. The random input earthquakes and spatially-variable soil parameters in slope are simultaneously quantified. By the proposed method, assumption-free fragility curves of a slope are established without limiting the fragility curve shape. The obtained fragility results are also compared with those from two classic parametric fragility methods (linear regression and maximum likelihood estimation) and Monte Carlo simulation. The results demonstrate that the proposed assumption-free method has potential to gives more rigorous and accurate fragility results than classical parametric fragility analysis methods. With the proposed method, more reliable fragility results can be obtained for slope seismic risk assessment.

期刊论文 2025-09-01 DOI: 10.1016/j.ress.2025.111132 ISSN: 0951-8320

A significant amount of open-pit-mine broken sandstone (OMBS) is produced during open-pit mining. The mechanical strength of the loose sandstone is critical for ensuring dump slope stability and sustainable mine construction. This study investigates the modification of OMBS using artemisia sphaerocephala krasch (ASK) gum to enhance its engineering properties. Unconfined compressive strength, shear strength and permeability tests were conducted to quantitatively analyze the modification effect. And the stability was evaluated using FLAC3D simulation methods. The modification mechanism was characterized through SEM, FT-IR, XRD. The results demonstrated that the addition of 2 % ASK gum significantly improved OMBS mechanical performance and reduced permeability. Meanwhile, the failure mode of OMBS changed with the ASK gum content increasing. The simulation result indicated the stability of modified dump slope was better under the drying-wetting cycle. From the perspective of microstructure and chemical characteristics, the addition of ASK gum created new hydrogen bonds through intermolecular interactions with the hydrophilic groups between OMBS particles and formed a dense and stable structure through three reinforcement modes: surface encapsulation, pore filling, and bonding connection. This study provides a new idea for resource saving and environmentally friendly mining area development.

期刊论文 2025-08-20 DOI: 10.1016/j.colsurfa.2025.137053 ISSN: 0927-7757
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共474条,48页