共检索到 1

Aeolian sand along the Hojiakueri Railway in the Taklimakan Desert exhibits poor mechanical properties for direct use as a filler for railway subgrades. Although cemented soil reinforced with single fibers can improve mechanical properties, its limited effectiveness and high cement usage pose significant economic and environmental concerns. This study investigated the improvement of splitting tensile strength (STS) in cemented aeolian sand through hybrid fiber reinforcement. An orthogonal test was designed to evaluate four factors-fiber types (pairwise combinations of basalt, polypropylene, and glass fibers), fiber lengths (3, 6, and 9 mm), hybridization ratios (1:1, 1:3, and 3:1), and fiber contents (4 %o, 8 %o, and 12 %o) - along with their interactions. The performance of cemented aeolian sand reinforced with hybrid fiber (CASRHF) was evaluated through STS tests and scanning electron microscopy (SEM). The results identified the optimal combination as a 1:1 mix of 6 mm basalt and polypropylene fibers with a fiber content of 12 %o. The interaction between hybrid fiber type and fiber length was the most critical factor influencing STS, followed by hybrid fiber type, fiber length, and fiber content. SEM analysis further revealed a linear negative correlation between STS and porosity, providing new insights into the microscopic mechanisms. The findings underscore the importance of optimizing hybrid fiber combinations to meet the performance requirements of railway subgrade beds in aeolian sand regions.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04596 ISSN: 2214-5095
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页