共检索到 3

The relationships between climate (January and July temperatures, annual precipitation, and a relative moisture index) and the number of foci and intensity of the needle cast disease caused by fungi from the genus Lophodermium Chevall. in the Scots pine nurseries and provenance trials in Krasnoyarsk krai have been studied using multivariate statistics methods. It is found that peaks in the disease occurrence are related to the warm and humid weather conditions. Bioclimatic models of the needle cast ranges have been built using the climate variables; the spatial dynamics of the disease occurrence have been projected under various scenarios of climate warming over the 21st century. Model experiments have shown that the needle cast disease would shift northwards into the new regions in Krasnoyarsk krai, where the phytopathogen has not yet been registered in the nurseries. The largest forest areas exposed to needle cast disease are predicted to be at a high risk of outbreaks by 2020 under moderate climate warming. With a significant warming trend by 2080, potential risk areas will be reduced, because the pine expansion into the permafrost zone should be limited by slow thawing of its active layer.

期刊论文 2016-11-01 DOI: 10.1134/S1995425516060135 ISSN: 1995-4255

Global warming is most pronounced in high-latitude regions by altering habitat conditions and affecting permafrost degradation, which may significantly influence tree productivity and vegetation changes. In this study, by applying a space-for-time approach, we selected three plots of Larix gmelinii forest from a continuous permafrost zone in Siberia with different thermo-hydrological soil regimes and ground cover vegetation with the objective of assessing how tree growth and productivity will change under different stages of permafrost degradation. A tree-ring multi-proxy characterization of mature trees was used to identify shift in ecophysiological responses related to the modified plant-soil system. Variability of tree-ring width (1975-2009), stable isotope ratios (oxygen and carbon, 2000-2009) and xylem structural characteristics (2000-2009) under climatic conditions of particular years indicated that an increased depth of the soil active layer will initially lead to increase of tree productivity. However, due to an expected water use increase through transpiration, the system might progressively shift from a temperature to a moisture-limited environment. (C) 2015 Elsevier GmbH. All rights reserved.

期刊论文 2015-01-01 DOI: 10.1016/j.dendro.2015.05.002 ISSN: 1125-7865

Stream chemistry in permafrost regions is regulated by a variety of drivers that affect hydrologic flowpaths and watershed carbon and nutrient dynamics. Here we examine the extent to which seasonal dynamics of soil active layer thickness and wildfires regulate solute concentration in streams of the continuous permafrost region of the Central Siberian Plateau. Samples were collected from 2006 to 2012 during the frost-free season (May-September) from sixteen watersheds with fire histories ranging from 3 to 120 years. The influence of permafrost was evident through significantly higher dissolved organic carbon (DOC) concentrations in the spring, when only the organic soil horizon was accessible to runoff. As the active layer deepened through the growing season, water was routed deeper through the underlying mineral horizon where DOC underwent adsorption and concentrations decreased. In contrast, mean concentrations of major cations (Ca2+ > Na+ > Mg2+ > K+) were significantly higher in the summer, when contact with mineral horizons in the active zone provided a source of cations. Wildfire caused significantly lower concentrations of DOC in more recently burned watersheds, due to removal of a source of DOC through combustion of the organic layer. An opposite trend was observed for dissolved inorganic carbon and major cations in more recently burned watersheds. There was also indication of talik presence in three of the larger watersheds evidenced by Cl- concentrations that were ten times higher than those of other watersheds. Because climate change affects both fire recurrence intervals as well as rates of permafrost degradation, delineating their combined effects on solute concentration allows forecasting of the evolution of biogeochemical cycles in this region in the future.

期刊论文 2013-12-01 DOI: 10.1007/s10533-013-9922-5 ISSN: 0168-2563
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页