The high latitudes cover similar to 20% of Earth's land surface. This region is facing many shifts in thermal, moisture and vegetation properties, driven by climate warming. Here we leverage remote sensing and climate reanalysis records to improve understanding of changes in ecosystem indicators. We applied non-parametric trend detections and Getis-Ord Gi* spatial hotspot assessments. We found substantial terrestrial warming trends across Siberia, portions of Greenland, Alaska, and western Canada. The same regions showed increases in vapor pressure deficit; changes in precipitation and soil moisture were variable. Vegetation greening and browning were widespread across both continents. Browning of the boreal zone was especially evident in autumn. Multivariate hotspot analysis indicated that Siberian ecoregions have experienced substantial, simultaneous, changes in thermal, moisture and vegetation status. Finally, we found that using regionally-based trends alone, without local assessments, can yield largely incomplete views of high-latitude change.
2025-01-28 Web of ScienceRetrogressive thaw slumps (RTSs) are among the most dynamic landforms resulting from the thawing of ice-rich permafrost. However, RTS distribution and evolution are poorly quantified because most of them occur in remote and inaccessible areas. In this study, we propose a method that integrates deep learning, change detection, and medial axis transform, aiming to automatically quantify the RTS development on multi-temporal images in the Beiluhe region on the Tibetan Plateau from 2017 to 2019. The images are taken by the Planet CubeSat constellation with high spatial and temporal resolution. The experiments show that automatic delineation based on deep learning can produce similar results to manual delineation, providing the potential of using these results to quantify the changes of RTS boundaries in different years. Our method reveals that among manuallydelineated 342 RTSs in the Beiluhe region, 83% and 76% of them expanded from 2017 to 2018 and 2018 to 2019, respectively. For the expansion from 2017 to 2018, the average and maximum expanding areas are 0.20 ha and 1.47 ha, while the average and maximum retreat distances are 21.3 m and 91 m, respectively. For 2018 to 2019 the average and maximum expansion areas and retreat distances are 0.22 ha, 2.53 ha, 25.0 m, and 212 m, respectively. The results show that the method can quantify RTS development automatically on multi-temporal images but may miss some small and subtle RTSs. Moreover, this study provides the very first quantitative report on RTS development on the Tibetan Plateau, which helps to advance the understanding of permafrost degradation.
2021-10-01 Web of ScienceMapping accurately vegetation surfaces in space and time in the ice-free areas of Antarctica can provide important information to quantitatively describe the evolution of their ecosystems. Spaceborne remote sensing is the adequate way to map and evaluate multitemporal changes on the Antarctic vegetation at large but its nature of occurrence, in relatively small and sparse patches, makes the identification very challenging. The inclusion of an intermediate scale of observation between ground and satellite scales, provided by Unmanned Aerial Vehicles (UAV) imagery, is of great help not only for their effective classification, but also for discriminating their main communities (lichens and mosses). Thus, this paper quantifies accurately recent changes of the vegetated areas in Fildes Peninsula (King George Island, Antarctica) through a novel methodology based on the integration of multiplatform data (satellite and UAV). It consists of multiscale imagery (spatial resolution of 2 m and 2 cm) from the same period to create a robust classifier that, after intensive calibration, is adequately used in other dates, where field reference data is scarce or not available at all. The methodology is developed and tested with UAV and satellite data from 2017 showing overall accuracies of 96% and kappa equal to 0.94 with a SVM classifier. These high performances allow the extrapolation to a pair of previous dates, 2006 and 2013, when atmospherically clear very high-resolution satellite imagery are available. The classification allows verifying a loss of the total area of vegetation of 4.5% during the 11-year time period under analysis, which corresponds to a 10.3% reduction for Usnea sp. and 9.8% for moss formations. Nevertheless, the breakdown analysis by time period shows a distinct behaviour for each vegetation type which are evaluated and discussed, namely for Usnea sp. whose decline is likely to be related to changing snow conditions. (C) 2019 Elsevier B.V. All rights reserved.
2020-02-20 Web of ScienceThe accelerated warming of the Arctic climate may alter the local and regional surface energy balances, for which changing land surface temperatures (LSTs) are a key indicator. Modeling current and anticipated changes in the surface energy balance tequires an understanding of the spatio-temporal interactions between LSTs and land cover, both of which can be monitored globally by measurements from space. This paper investigates the accuracy of the MODIS LST/Emissivity Daily L3 Global 1 km V005 product and its spatio-temporal sensitivity to land surface properties in a Canadian High Arctic permafrost landscape. The land cover ranged from fully vegetated wet sedge tundra to barren rock. MODIS LSTs were compared with in situ radiometer measurements from wet tundra areas collected over a 2-year period from July 2008 to July 2010 including both summer and winter conditions. The accuracy of the MODIS LSTs was -1.1 degrees C with a root mean square error of 3.9 degrees C over the entire observation period. Agreement was lowest during the freeze-back periods where MODIS 1ST showed a cold bias likely due to the overrepresentation of clear-sky conditions. A multi-year analysis of LST spatial anomalies, i.e., the difference between MODIS LSTs and the MODIS 1ST regional mean, revealed a robust spatiotemporal pattern. Highest variability in LST anomalies was found during freeze-up and thaw periods as well as for open water surface in early summer due to the presence or absence of snow or ice. The summer anomaly pattern was similar for all three years despite strong differences in precipitation, air temperature and net radiation. Summer periods with regional mean ISTs above 5.0 degrees C showed the greatest spatial diversity with four distinct 2.0 degrees C classes. Summer anomalies ranged from -4.5 degrees C to 2.6 degrees C with an average standard deviation of 1.8 degrees C. Dry ridge areas heated up the most, while wetland areas and dry areas of sparsely vegetated bedrock with a high albedo remained coolest. The observed summer LST anomalies can be used as a baseline against which to evaluate both past and future changes in land surface properties that relate to the surface energy balance. Summer anomaly classes mainly reflected a combination of albedo and surface wetness. The potential to use this tool to monitor surface drying and wetting in the Arctic should therefore be further explored. A multi-sensor approach combining thermal satellite measurements with optical and radar imagery promises to be an effective tool for a dynamic, process-based ecosystem monitoring scheme. (C) 2015 Elsevier Inc. All rights reserved.
2015-10-01 Web of Science