共检索到 4

Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security. In this study, we collected a total of 164 water samples in the western region of the Altay Mountains, China, in 2021. We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions (including F-, Cl-, NO3-, SO42-, Li+, Na+, NH4+, K+, Mg2+, and Ca2+) present in river water, as well as to identify the factors influencing these variations. Additionally, we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids, soluble sodium percentage, sodium adsorption ratio, and total hardness. Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00. The mean ion concentration was ranked as follows: Ca2+>SO42->Na+>NO3->Mg2+>K+>Cl->F->NH4+>Li+. Ca2+, SO42-, Na+, and NO3- occupied 83% of the total ion concentration. In addition, compared with other seasons, the spatial variation of the ion concentration in spring was obvious. An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering. The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-, NO3-, SO42-, Ca2+, and Na+. Overall, river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking. This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.

期刊论文 2023-09-01 DOI: http://dx.doi.org/10.1007/s40333-023-0106-4 ISSN: 1674-6767

The Loess Plateau, located in Gansu Province, is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province. In the last 40 a, ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources. Remediation of crude-oil contaminated soil in this area remains to be a challenging task. In this study, in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil (20 g/kg) by Calendula officinalis L., we designed five treatments, i.e., natural attenuation (CK), planted C. officinalis only (P), planted C. officinalis with biochar amendment (PB), planted C. officinalis with organic compost amendment (PC), and planted C. officinalis with co-amendment of biochar and organic compost (PBC). After 152 d of cultivation, total petroleum hydrocarbons (TPH) removal rates of CK, P, PB, PC and PBC were 6.36%, 50.08%, 39.58%, 73.10% and 59.87%, respectively. Shoot and root dry weights of C. officinalis significantly increased by 172.31% and 80.96% under PC and 311.61% and 145.43% under PBC, respectively as compared with P (P<0.05). Total chlorophyll contents in leaves of C. officinalis under P, PC and PBC significantly increased by 77.36%, 125.50% and 79.80%, respectively (P<0.05) as compared with PB. Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed. The highest total N, total P, available N, available P and SOM occurred in PC, followed by PBC (P<0.05). C. officinalis rhizospheric soil dehydrogenase (DHA) and polyphenol oxidase (PPO) activities in PB were lower than those of other treatments (P<0.05). The values of ACE (abundance-based coverage estimators) and Chao indices for rhizospheric bacteria were the highest under PC followed by PBC, P, PB and CK (P<0.05). However, the Shannon index for bacteria was the highest under PC and PBC, followed by P, PB and CK (P<0.05). In terms of soil microbial community composition, Proteiniphilum, Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC. Relative abundances of Pseudallescheria, Ochroconis, Fusarium, Sarocladium, Podospora, Apodus, Pyrenochaetopsis and Schizpthecium under PC and PBC were higher, while relative abundances of Gliomastix, Aspergillus and Alternaria were lower under PC and PBC. As per the nonmetric multidimensional scaling (NMDS) analysis, application of organic compost significantly promoted soil N and P contents, shoot length, root vitality, chlorophyll ratio, total chlorophyll, abundance and diversity of rhizospheric soil microbial community in C. officinalis. A high pH value and lower soil N and P contents induced by biochar, altered C. officinalis rhizospheric soil microbial community composition, which might have restrained its phytoremediation efficiency. The results suggest that organic compost-assisted C. officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau, China.

期刊论文 2022-10-01 DOI: http://dx.doi.org/10.1007/s40333-021-0011-7 ISSN: 1674-6767

Recent satellite observations of atmospheric aerosol loading over Asia indicate a dipole pattern in the aerosol optical depth (AOD) with a substantial decrease in AOD over East Asia and persistent increase in AOD over South Asia, the two global hotspots of aerosol emissions. Aerosol emissions over Asia are also changing rapidly. However, the evolution of physical, optical and chemical columnar aerosol characteristics, and their radiative effects over time, and the resultant impacts of such evolving trends on climate and other associated risks are not yet properly quantified, and used in climate impact assessments. In order to do so, we closely examine, in addition to satellite observations, for the first time, high-quality, ca. two-decade long ground-based observations since 2001 of aerosols and their radiative effects from several locations in the Indo-Gangetic Plain (IGP) in South Asia and the North China Plain (NCP) in East Asia. A clear divergence in the trends in AODs is evident between the IGP and the NCP. The single scattering albedo (SSA) is increasing, and the absorption AOD due to carbonaceous aerosols (AAOD(CA)) is decreasing over both regions, confirming that aerosols are becoming more scattering in nature. The trends in observed aerosol content (AOD) and composition (SSA) are statistically significant over Kanpur in the IGP and Beijing in the NCP, two locations with longest ground-based records. The aerosol radiative forcing of atmosphere (ARF(ATM)) and resultant atmospheric heating rate (HR) are decreasing over both regions. However, current regionally coherent and high annual HR of 0.5-1.0 K day(-1) has severe implications to climate, hydrological cycle, and cryosphere over Asia and beyond. These results based on high-quality observations over a large spatial domain are of great significance and are crucial for modelling and quantifying aerosol-climate interactions. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of International Association for Gondwana Research.

期刊论文 2022-05-01 DOI: 10.1016/j.gr.2021.09.016 ISSN: 1342-937X

A large reservoir of organic carbon is stored in the permafrost region. Therefore, understanding the export of dissolved organic carbon (DOC) from rivers in the permafrost zone is important in the context of climate change. This study investigated the dynamics of DOC export from the wetlands of the Kandu River catchment located in a cold temperate region in northeast China during the growing seasons of 2011 and 2012. Our findings indicated that subsurface flow was the primary runoff pathway that transports DOC from wetland soil to stream discharge. The organic-mineral soil structure resulted in substantial differences in water sources, as well as in DOC resources, between the flood and base flow volume during the growing seasons. The active layer depth is key, as it affects runoff generation and the DOC concentration and chemical characteristics of stream discharge. The DOC flux from our study area was estimated to be up to 1039.66 t during the growing season, which represents more than one third of the net ecosystem exchange (NEE) in wetlands. Given the expected increase in air temperature and precipitation, our results indicate that there will be an increase in the total DOC flux for the study region in the future as a result of increased DOC concentration. (C) 2015 Elsevier B.V. All rights reserved.

期刊论文 2015-12-01 DOI: 10.1016/j.jhydrol.2015.10.008 ISSN: 0022-1694
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页