Rubber-based intercropping is a recommended practice due to its ecological and economic benefits. Understanding the implications of ecophysiological changes in intercropping farms on the production and technological properties of Hevea rubber is still necessary. This study investigated the effects of seasonal changes in the leaf area index (LAI) and soil moisture content (SMC) of rubber-based intercropping farms (RBIFs) on the latex biochemical composition, yield, and technological properties of Hevea rubber. Three RBIFs: rubber-bamboo (RB); rubber-melinjo (RM); rubber-coffee (RC), and one rubber monocropping farm (RR) were selected in a village in southern Thailand. Data were collected from September to December 2020 (S1), January to April 2021 (S2), and May to August 2021 (S3). Over the study period, RB, RM, and RC exhibited significantly high LAI values of 1.2, 1.05, and 0.99, respectively, whereas RR had a low LAI of 0.79. The increasing SMC with soil depths was pronounced in all RBIFs. RB and RM expressed less physiological stress and delivered latex yield, which was on average 40% higher than that of RR. With higher molecular weight distributions, their rheological properties were comparable to those of RR. However, the latex Mg content of RB and RM significantly increased to 660 and 742 mg/kg, respectively, in S2. Their dry rubbers had an ash content of more than 0.6% in S3.
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and deicing, coastal areas, and saline soils areas. In recent years, the performance evolution of asphalt materials under salt erosion environments has been widely investigated. However, there is a lack of a systematic summary of salt erosion damage for asphalt materials from a multi-scale perspective. The objective in this paper is to review the performance evolution and the damage mechanism of asphalt mixtures and binders under salt erosion environments from a multi-scale perspective. The salt erosion damage and damage mechanism of asphalt mixtures is discussed. The influence of salt categories and erosion modes on the asphalt binder is classified. The salt erosion resistance of different asphalt binders is determined. In addition, the application of microscopic test methods to investigate the salt damage mechanism of asphalt binders is generalized. This review finds that the pavement performance of asphalt mixtures decreased significantly after salt erosion. A good explanation for the salt erosion mechanism of asphalt mixtures can be provided from the perspective of pores, interface adhesion, and asphalt mortar. Salt categories and erosion modes exerted great influences on the rheological performance of asphalt binders. The performance of different asphalt binders showed a remarkable diversity under salt erosion environments. In addition, the evolution of the chemical composition and microscopic morphology of asphalt binders under salt erosion environments can be well characterized by Fourier Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), and microscopic tests. Finally, the major focus of future research and the challenges that may be encountered are discussed. From this literature review, pore expansion mechanisms differ fundamentally between conventional and salt storage asphalt mixtures. Sulfate ions exhibit stronger erosive effects than chlorides due to their chemical reactivity with asphalt components. Molecular-scale analyses confirm that salt solutions accelerate asphalt aging through light-component depletion and heavy-component accumulation. These collective findings from prior studies establish critical theoretical foundations for designing durable pavements in saline environments.
Estimating Top-of-Atmosphere (TOA) flux and radiance is essential for understanding Earth's radiation budget and climate dynamics. This study utilized polar nephelometer measurements of aerosol scattering coefficients at 17 angles (9-170 degrees), enabling the experimental determination of aerosol phase functions and the calculation of Legendre moments. These moments were then used to estimate TOA flux and radiance. Conducted at a tropical coastal site in India, the study observed significant seasonal and diurnal variations in angular scattering patterns, with the highest scattering during winter and the lowest during the monsoon. Notably, a prominent secondary scattering mode, with varying magnitude across different seasons, was observed in the 20-30 degrees angular range, highlighting the influence of different air masses and aerosol sources. Chemical analysis of size-segregated aerosols revealed that fine-mode aerosols were dominated by anthropogenic species, such as sulfate, nitrate, and ammonium, throughout all seasons. In contrast, coarse-mode aerosols showed a clear presence of sea-salt aerosols during the monsoon and mineral dust during the pre-monsoon periods. The presence of very large coarse-mode non-spherical aerosols caused increased oscillations in the phase function beyond 60 degrees during the pre-monsoon and monsoon seasons. This also led to a weak association between the phase function derived from angular scattering measurements and those predicted by the Henyey-Greenstein approximation. As a result, TOA fluxes and radiances derived using the Henyey-Greenstein approximation (with the asymmetry parameter as input in the radiative transfer model) showed a significant difference- up to 24% in seasons with substantial coarse-mode aerosol presence- compared to those derived using the Legendre moments of the phase function. Therefore, TOA flux and radiance estimates using Legendre moments are generally more accurate in the presence of complex aerosol scattering characteristics, particularly for non-spherical or coarse-mode aerosols, while the Henyey-Greenstein phase function may yield less accurate results due to its simplified representation of scattering behavior.
Hydrothermal solidification offers an effective, sustainable method for stabilizing clay soil, addressing environmental concerns while improving geotechnical properties. Facilitating pozzolanic reactions between lime and clay under controlled temperature and pressure significantly enhances compressive strength and soil durability. This process promotes calcium silicate hydrate (C-S-H) formation, reduces industrial waste, and supports lime reuse, making it an energy-efficient soil improvement approach. This study investigates the impact of lime addition (0-20%) and various chemical and physical parameters on clay soil compressive strength. Key chemical components include SiO2 (20.1-76.9%), Al2O3 (7.6-34.8%), Fe2O3 (0.6-32.9%), CaO (0.1-43.5%), MgO (0-9.56%), Na2O (0.01-2.8%), and K2O (0.1-3.9%). Physical properties such as density, plasticity index (6-34.5%), and liquid limit (24-65.2%) were analyzed alongside process parameters like heating temperature (60-1000 degrees C), curing time (0-120 days), and curing temperature (20-41 degrees C). Using a dataset of 152 samples divided into training and testing groups, the statistical analysis focused on the leaching coefficient (Lc) and silica-sesquioxide ratio (Kr). Lc emerged as the most significant factor, achieving an R2 of 0.89 and an RMSE of 1.13 MPa. This study found that the compressive strength of lime-treated clay soils varied from 0.02 MPa to 11.9 MPa, influenced by lime concentration, chemical composition, and processing factors. Increased lime additions, particularly when combined with hydrothermal treatment, led to significant strength enhancements owing to improved pozzolanic activity. The plasticity index (PI) markedly diminished with lime stabilization, enhancing workability and mitigating volumetric variations. The density of treated soils rose from 0.8 g/cm3 to 2.1 g/cm3, signifying improved particle compaction and less porosity. The mechanical enhancements indicate that hydrothermal solidification efficiently converts expanding clay into a robust and stable material appropriate for geotechnical applications. Increased Lc improved compressive strength through enhanced pozzolanic activity and density, while higher Kr values, indicating lower CaO availability, yielded limited strength gains. Lc consistently outperformed Kr and other chemical compositions in enhancing clay soil compressive strength.
Slag cements are used to design grouts with high water-to-cement ratio and low permeability, to improve the physical and mechanical properties of permeable soils. Because of the variable physico-chemical properties of slag, it can be challenging to predict their behavior. Most research on slag reactivity involves low water-to-binder ratios in concrete and strength. This study investigates grouts with higher water-to-binder ratio of 6, for water resistant barriers executed using soilmixing or self-hardening slurry cut-off wall techniques, where the main engineering property is the hydraulic conductivity. The effect of slag composition on grout properties was studied at two water-to-binder ratios (0.5 and 6) and varying slag proportions, focusing on compressive strength and hydraulic conductivity. The results showed that higher water-to-binder ratios influence hydration, phase formation, and pore distribution, preventing the formation of portlandite. Isothermal calorimetry revealed that the silicate peak in sulfate-rich slag-based grout, linked to C-S-H and Ca(OH)2 formation, overlapped with the aluminate peak and appeared earlier, which was not observed at a water-to-binder ratio of 0.5. Higher water-to-binder ratio promoted the formation of ettringite due to high sulfate content, affecting compressive strength and pore distribution. Coarser pores in sulfate-rich slag-based grout led to low compressive strength and high permeability. In addition, results showed that the reactivity of slag could not be determined solely by its basicity index. The performance of slag-based grouts depends on sulfate content and short-term slag reactivity. However, the evaluation of long-term slag hydration is necessary to understand the potential influence of latent slag hydration on engineering properties and performance.
Large amounts of steel slag (SS) stockpiled and buried leads to land occupation, and is prone to cause soil and water contamination. Partially replacing natural minerals in pavement construction can contribute to the rapid consumption of stockpiled SS, but its poor volume stability limits its widespread adoption into engineering applications. Meanwhile, the potential leaching of hazardous substances (HS) should also be emphasized. This study prepared different pretreated SSs and asphalt mixtures. The differences and improvement mechanisms of the pretreatment on the SS properties were investigated through micro-morphology and chemical composition analyses. The physical properties of different SS and the long-term volume stability and moisture damage resistance of the steel slag asphalt mixture (SSAM) were tested. Moreover, a revised HS leaching test method for the SSAM was proposed, and the effectiveness of various pretreatment methods in reducing HS leaching was evaluated. The results revealed that the porous characteristics and free oxides contained in SS were the main obstacles to their large-scale application in pavement engineering. Natural aging, thermal immersion, and acid modification alter the composition of SS through chemical reactions and accelerate the consumption of free oxides. The polymer film formed by the silane coupling agent on the SS surface mitigated the environmental effects on the performance. The long-term performance of the SSAMs was improved, and the amount of HS precipitated was significantly reduced. Acetic acid modification and surface treatments are recommended because they are more effective in improving moisture damage resistance and reducing potential adverse environmental impacts. The findings are significant for reasonable pretreatment and application of converted SS as well as for contributing to the sustainable development of transportation infrastructure.
High uncertainty in optical properties of black carbon (BC) involving heterogeneous chemistry has recently attracted increasing attention in the field of atmospheric climatology. To fill the gap in BC optical knowledge so as to estimate more accurate climate effects and serve the response to global warming, it is beneficial to conduct site-level studies on BC light absorption enhancement (E-abs) characteristics. Real-time surface gas and particulate pollutant observations during the summer and winter over Wuhan were utilized for the analysis of E-abs simulated by minimum R squared (MRS), considering two distinct atmospheric conditions (2015 and 2017). In general, differences in aerosol emissions led to E-abs differential behaviors. The summer average of E-abs (1.92 +/- 0.55) in 2015 was higher than the winter average (1.27 +/- 0.42), while the average (1.11 +/- 0.20) in 2017 summer was lower than that (1.67 +/- 0.69) in winter. E-abs and R-BC (representing the mass ratio of non-refractory constituents to elemental carbon) constraints suggest that E-abs increased with the increase in R-BC under the ambient condition enriched by secondary inorganic aerosol (SIA), with a maximum growth rate of 70.6% in 2015 summer. However, E-abs demonstrated a negative trend against R-BC in 2017 winter due to the more complicated mixing state. The result arose from the opposite impact of hygroscopic SIA and absorbing OC/irregular distributed coatings on amplifying the light absorbency of BC. Furthermore, sensitivity analysis revealed a robust positive correlation (R > 0.9) between aerosol chemical compositions (including sulfate, nitrate, ammonium and secondary organic carbon), which could be significantly perturbed by only a small fraction of absorbing materials or restructuring BC through gaps filling. The above findings not only deepen the understanding of BC, but also provide useful information for the scientific decision-making in government to mitigate particulate pollution and obtain more precise BC radiative forcing.
The tensile strength of roots and the friction characteristics of the root-soil interface of tree species are the indicators that play a crucial role in understanding the mechanism of soil reinforcement by roots. To calculate the effectiveness of the reinforcement of soil by tree roots based on essential influencing parameters, typical trees in the coastal region of southeastern China selected for this study were subjected to tests of the tensile mechanical properties of their roots, as well as studies on the friction characteristics of the root-soil interface and the microscopic interfaces. The results indicated that in the 1-7 diameter classes, the root tensile strength of both Pinus massoniana and Cunninghamia lanceolata was negatively correlated with the root diameter in accordance with the power function. The root tensile strength of these two trees, however, was positively correlated with the lignin content but negatively correlated with cellulose and hemicellulose contents. The shear strength at the root-soil interface and the vertical load exhibited a constitutive relationship, which followed the Mohr-Coulomb criterion. As the root diameter increased, both the cohesion and the friction coefficients at the root-soil interface gradually increased, but the growth rate stood at around 15%. The cohesion value of the root-soil interface of the two trees decreased linearly with the increase in soil moisture content within the range of 25 to 45%. At the microinterface, the root surface of C. lanceolata exhibited concave grooves and convex ridges that extended along the axial direction of roots, with their height differences increasing with the enlargement of the root diameter. The rough surface of P. massoniana roots had areas composed of polygonal meshes, with an increase observed in the mesh density with increasing root diameter.
Background. The Absheron Peninsula is the most densely populated and ecologically polluted area in the Republic of Azerbaijan. The rapid development of the oil industry in this area has had a negative impact on both the sea and a significant part of the peninsula. This article examines the physical and geographical conditions, geological and geomorphological structure, and the physico-mechanical properties of rocks from a hydrogeological perspective. By summarizing data on the depth, flow rate, and chemical composition of groundwater and evaluating factors that play a significant role in the formation of the area's hydrogeological conditions, reasons for the rise in groundwater levels have been established, and solutions for their elimination proposed. The aim of the study is to investigate the causes of ecological imbalance, identify factors affecting the modern hydrogeological conditions of the Absheron Peninsula, and suggest preventive measures against potential geological events. The peninsula's hydrographic network consists of the Caspian Sea, streams, numerous saline lakes fed by atmospheric precipitation and oil-containing waters, with lakes having a significant impact on the climate and ecological situation in this densely populated area. Methods. Research methods involve studying the physico-mechanical properties of soil and rock samples collected from hand-dug wells and boreholes in terms of engineering hydrogeology, their lithological composition, and thickness. Results. The charachteristics of the artificial lakes, reservoirs, villages, and settlements of the Absheron Peninsula, as well as its unconfined and confined aquifers are studied in the article. Conclusions. The results have revealed the modern hydrogeological conditions across the entire area of the Absheron Peninsula, as well as natural and anthropogenic factors influencing its formation. Based on these factors, it is possible to predict endogenous and exogenous geological events and take appropriate preventive protective measures. Based on the results of preliminary assessment and earlier hydrogeological zoning, 12 promising areas were identified in 3 hydrogeological areas.
Aerosol behavior over the Himalayas plays an important role in the regional climate of South Asia. Previous studies at highaltitude observatories have provided evidence of the impact of long-range transport of pollutants from the Indo-Gangetic Plain (IGP). However, little information exists for the valley areas in the high Himalayas where significant local anthropogenic emissions can act as additional sources of short-living climate forcers and pollutants. The valley areas host most economic activities based on agriculture, forestry, and pilgrimage during every summer season. We report here first measurements at a valley site at similar to 2600 m a.s.l. on the trek to the Gangotri glacier (Gaumukh), in the Western Himalayas, where local infrastructures for atmospheric measurements are absent. The study comprised short-term measurement of aerosols, chemical characterization, and estimation of aerosol radiative forcing (ARF) during the winter and summer periods (2015-2016). The particulate matter mass concentrations were observed to be higher than the permissible limit during the summer campaigns. We obtained clear evidence of the impact of local anthropogenic sources: particulate nitrate is associated with coarse aerosol particles, the black carbon (BC) mass fraction appears undiluted with respect tomeasurements performed in the lower Himalayas, and inwinter, both BC and sulfate concentrations in the valley site are well above the background levels reported from literature studies for mountain peaks. Finally, high concentrations of trace metals such as copper point to anthropogenic activities, including combustion and agriculture. While most studies in the Himalayas have addressed pollution in the high Himalayas in terms of transport from IGP, our study provides clear evidence that local sources cannot be overlooked over the high-altitude Himalayas. The estimated direct clear-sky ARF was estimated to be in the range of -0.1 to +1.6Wm(-2), with significant heating in the atmosphere over the highaltitude Himalayan study site. These results indicate the need to establish systematic aerosol monitoring activities in the high Himalayan valleys.