An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.
The preparation of geopolymer for solidification/stabilization of heavy metal contaminated soils using industrial solid waste was a sustainable method. In this study, a binary geopolymer curing agent was synthesized from red mud and fly ash for the treatment of copper- and cadmium- contaminated soils. The changes in the properties of the cured soil were investigated by analyzing compressive strength, permeability coefficient, pH value, toxicity leaching, and the chemical forms of heavy metals. These parameters were examined under varying amounts of curing agent and curing time. The solidification mechanism of contaminated soil was revealed by microscopic experiments such as X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that geopolymer could significantly improved the mechanical properties and environmental safety of contaminated soil. Compressive strengths of Cu and Cd contaminated soils after 28d of curing with 30 % geopolymer were 1.27 and 1.44 MPa, the permeability coefficients were 4.2 and 3.8-6cm/s, and toxic leaching amounts of Cu2+ and Cd2+ were 4.8 and 0.21 mg/L, and pH values were 10.9 and 10.6, respectively. Geopolymer gel structures not only filled the voids between soil particles but also physically encapsulated, chemically bonded, precipitated and ion-exchanged to achieve solidification/stabilization of contaminated soils. This research provided a new technology for the management of heavy metal contaminated soil and promoted the sustainable use of industrial solid waste.
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum x vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg-1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. x vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. x vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. x vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
In this study, wild barley (Hordeum brevisubulatum) infected (E+) and uninfected (E-) by Epichlo & euml; bromicola were used for hydroponic experiments during the seedling stage. Various attributes, such as the effect of fungal endophyte on the growth and development of wild barley, the absorption of cadmium (Cd) and mineral elements (Ca, Mg, Fe, Mn, Cu, Zn), subcellular distribution, and chemical forms were investigated under CdCl2 stress. The results showed that the fungal endophy significantly reduced the Ca content and percentage of plant roots under Cd stress. The Fe and Mn content of roots, the mineral element content of soluble fractions, and the stems in the pectin acid or protein-chelated state increased significantly in response to fungal endophy. Epichlo & euml; endophyte helped Cd2+ to enter into plants; and reduced the positive correlation of Ca-Fe and Ca-Mn in roots. In addition, it also decreased the correlation of soluble components Cd-Cu, Cd-Ca, Cd-Mg in roots, and the negative correlation between pectin acid or protein-chelated Cd in stems and mineral elements, to increase the absorbance of host for mineral elements. In conclusion, fungal endophy regulated the concentration and distribution of mineral elements, while storing more Cd2+ to resist the damage caused by Cd stress. The study could provide a ground for revealing the Cd tolerance mechanism of endophytic fungal symbionts. NOVELTY STATEMENT The present study is the first to study the effect of fungal endophy on essential mineral elements of plants under heavy metal stress, filling a gap in the existing research. The study could be helpful to reveal the mechanism of endophytic fungi to improve the host's tolerance to heavy metals and provide a foundation for the grass-endophyte symbionts to improve heavy metal-contaminated soils as ecological grasses.