Recently, ensemble multiple deep learning (DL) classifiers has been reported to be an effective method for improving remote sensing classification accuracy. Although these approaches still follow the conventional pattern of inputting instance features and outputting corresponding classes, they often overlook the intrinsic relationships between pixels beyond their spatial features. As a result, the diversity in the ensemble classification results primarily relies on different DL models. However, training the DL models consumes a significant amount of time, and training multiple networks not only incurs additional time costs but also affects the overall efficiency. To address this, a new approach has been proposed in this paper, which takes advantage of the relationships between pixels and their combinations to generate diverse classification results. It’s a novel ensemble classification framework, termed as the Doublet-Based Ensemble Classification Framework (DBECF), which eliminates the need for multiple classifiers. The DBECF starts by utilizing the training set to combine different samples to generate doublets. Then, features are assigned to these doublets through an exponentiation operation, resulting in a doublet training set. Using both the original training set and the derived doublet datasets, the DBECF is trained. For each input pixel, the DBECF produces multiple classification results, which are then integrated to obtain a more accurate output. To validate the proposed approach, experiments were conducted on three datasets, including multispectral images, hyperspectral images, and time series images. The maximum accuracies achieved by DBECF on the three datasets are 87.80 %, 97.71 %, and 83.51 %, respectively. In comparison to the contrastive methods, the incremental improvements in accuracy are 3.73 %, 7.66 %, and 9.16 %, respectively. The experimental results indicate that no matter using DL or non-deep learning for training, our proposed framework achieves progress on accuracy improvement outperforming classifications using comparative approach that based on single instance. This research provides a new perspective on the combination of DL and ensemble learning, highlighting its important implications and practical value in enhancing classification accuracy and efficiency.
2024-02-01