Simple Summary Seafloor biodiversity provides a key ecosystem service, as an efficient route for carbon to be removed from the atmosphere to become buried (long-term) in marine sediment. Protecting near intact ecosystems, particularly those that are hotspots of biodiversity, with high numbers of unique species (endemics), is increasingly being recognised as the best route to protect existing blue carbon. This study measured globally significant stocks of blue carbon held within both rocky (17.5 tonnes carbon km(-2)) and soft (4.1 t C km(-2)) substrata shallow (20 m) seafloor communities along the Antarctic Peninsula. Along the 7998 km of seasonally ice-free shoreline, 59% of known dive sites were classified as rocky and 12% as soft substratum. This gave estimates of 253k t C in animals and plants found at 20 m depth, with a potential sequestration of 4.5k t C year(-1). More carbon was stored in assemblages with greater functional groups. Of the Antarctic Peninsula shore, 54% is still permanently ice covered, and so blue carbon ecosystem services are expected to more than double with continued climate warming. As one of the few increasing negative feedbacks against climate change, protecting seafloor communities around the Antarctic is expected to help tackle both the biodiversity and climate crises. The importance of cold-water blue carbon as biological carbon pumps that sequester carbon into ocean sediments is now being realised. Most polar blue carbon research to date has focussed on deep water, yet the highest productivity is in the shallows. This study measured the functional biodiversity and carbon standing stock accumulated by shallow-water (<25 m) benthic assemblages on both hard and soft substrata on the Antarctic Peninsula (WAP, 67 degrees S). Soft substrata benthic assemblages (391 +/- 499 t C km(-2)) contained 60% less carbon than hard substrata benthic assemblages (648 +/- 909). In situ observations of substrata by SCUBA divers provided estimates of 59% hard (4700 km) and 12% soft (960 km) substrata on seasonally ice-free shores of the Antarctic Peninsula, giving an estimate of 253,000 t C at 20 m depth, with a sequestration potential of ~4500 t C year(-1). Currently, 54% of the shoreline is permanently ice covered and so climate-mediated ice loss along the Peninsula is predicted to more than double this carbon sink. The steep fjordic shorelines make these assemblages a globally important pathway to sequestration, acting as one of the few negative (mitigating) feedbacks to climate change. The proposed WAP marine protected area could safeguard this ecosystem service, helping to tackle the climate and biodiversity crises.
2022-02-01 Web of ScienceA comprehensive overview is provided evaluating direct real-world CO2 emissions of both diesel and petrol cars newly registered in Europe between 1995 and 2015. Before 2011, European diesel cars emitted less CO2 per kilometre than petrol cars, but since then there is no appreciable difference in per-km CO2 emissions between diesel and petrol cars. Real-world CO2 emissions of diesel cars have not declined appreciably since 2001, while the CO2 emissions of petrol cars have been stagnant since 2012. When adding black carbon related CO2 equivalents, such as from diesel cars without particulate filters, diesel cars were discovered to have had much higher climate relevant emissions until the year 2001 when compared to petrol cars. From 2001 to 2015 CO2 equivalent emissions from new diesel cars and petrol cars were hardly distinguishable. Lifetime use phase CO2 equivalent emissions of all European passenger vehicles were modelled for 1995-2015 based on three scenarios: the historic case, another scenario freezing percentages of diesel cars at the low levels from the early 1990s (thus avoiding the observed boom in new diesel registrations), and an advanced mitigation scenario based on high proportions of petrol hybrid cars and cars burning gaseous fuels. The difference in CO2-equivalent emissions between the historical case and the scenario avoiding the diesel car boom is only 0.4%. The advanced mitigation scenario would have been able to achieve a 3.4% reduction in total CO2-equivalent emissions over the same time frame. The European diesel car boom appears to have been ineffective at reducing climate-warming emissions from the European transport sector.
2019-02-01 Web of ScienceThe uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control policies will be implemented. In this study, we explore how different assumptions on future air pollution policy and climate policy lead to different concentrations of air pollutants for a set of RCP-like scenarios developed using the IMAGE model. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W m(-2) and 6.0 W m(-2). Simulations using the global atmospheric chemistry and transport model TM5 for the present-day climate show that both climate mitigation and air pollution control policies have large-scale effects on pollutant concentrations, often of similar magnitude. If no further air pollution policies would be implemented, pollution levels could be considerably higher than in the RCPs, especially in Asia. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate by 2020, and in the longer term contribute to enhanced warming by methane. These effects tend to cancel each other on a global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W m(-2) in the 6.0 W m(-2) scenario and -0.16 W m(-2) in the 2.6 W m(-2) scenario. (C) 2013 Elsevier Ltd. All rights reserved.
2013-11-01 Web of Science