共检索到 4

The navigability of Arctic maritime passages has improved with the rapid retreat of sea ice in recent decades, and it is projected that the Northern Sea Route (NSR) will support further increases in shipping in the future. However, the opening of the NSR may bring potential environmental and climate risks to the Arctic and the rest of the world. This investigation assessed shipping emissions along the NSR and the climate impacts under global warming of 2 degrees C and 3 degrees C to support coordinated international decision-making. The results show that the magnitude of annual energy consumption of ships along the NSR is 109 kWh under global warming of 2 degrees C and 3 degrees C. The environmental impacts of the shipping decrease with fuel transition to clean, carbon-neutral fuel sources. Specifically, the maximum emission is CO2 (106 t), followed by NOX (104-5 t), CO (103-4 t), SOX (103 t), CH4 (102-3 t), organic carbon (102-3 t), N2O (101-2 t), and black carbon (BC, 101-2 t), in which CO2 and BC have great difference under high and low loads. Total emission exacerbates Arctic and global warming, and it is more significant in the Arctic in the next twenty years and across the rest of the world in the next one hundred years. The greatest climate impact factor is CO2, followed by NOX and BC which are more important in global and Arctic warming, respectively.

期刊论文 2024-01-15 DOI: http://dx.doi.org/10.1016/j.envpol.2023.122848 ISSN: 0269-7491

Recent studies examine the potential for large urban fires ignited in a hypothetical nuclear exchange of one hundred 15 kt weapons between India and Pakistan to alter the climate (e.g., Mills et al., 2014, , and Reisner et al., 2018, ). In this study, the global climate forcing and response is predicted by combining two atmospheric models, which together span the micro-scale to global scale processes involved. Individual fire plumes are modeled using the Weather Research and Forecasting (WRF) model, and the climate response is predicted by injecting the WRF-simulated black carbon (BC) emissions into the Energy Exascale Earth System Model (E3SM) atmosphere model Version 1 (EAMv1). Consistent with previous studies, the radiative forcing depends on smoke quantity and injection height, examined here as functions of fuel loading and atmospheric conditions. If the fuel burned is 1 g cm(-2), BC is quickly removed from the troposphere, causing no global mean climate forcing. If the fuel burned is 16 g cm(-2) and 100 such fires occurred simultaneously with characteristics similar to historical large urban firestorms, BC reaches the stratosphere, reducing solar radiation and causing cooling at the Earth's surface. Uncertainties in smoke composition and aerosol representation cause large uncertainties in the magnitude of the radiative forcing and cooling. The approximately 4 yr duration of the radiative forcing is shorter than the 8 to 15 yr that has previously been simulated. Uncertainties point to the need for further development of potential nuclear exchange scenarios, quantification of fuel loading, and improved understanding of fire propagation and aerosol modeling.

期刊论文 2020-12-27 DOI: 10.1029/2020JD033056 ISSN: 2169-897X

Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

期刊论文 2018-04-01 DOI: 10.1007/s13157-018-1023-8 ISSN: 0277-5212

Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi-and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries' impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the most efficient cooling from a switch to fuel with a lower BC emission factor (Kazakhstan, Estonia, and Latvia). The results presented here thus provide valuable information for climate impact assessments across a wide range of cookstove initiatives.

期刊论文 2015-11-01 DOI: 10.1088/1748-9326/10/11/114003 ISSN: 1748-9326
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页