共检索到 18

This study examines the Arctic surface air temperature response to regional aerosol emissions reductions using three fully coupled chemistry-climate models: National Center for Atmospheric Research-Community Earth System Model version 1, Geophysical Fluid Dynamics Laboratory-Coupled Climate Model version 3 (GFDL-CM3) and Goddard Institute for Space Studies-ModelE version 2. Each of these models was used to perform a series of aerosol perturbation experiments, in which emissions of different aerosol types (sulfate, black carbon (BC), and organic carbon) in different northern mid-latitude source regions, and of biomass burning aerosol over South America and Africa, were substantially reduced or eliminated. We find that the Arctic warms in nearly every experiment, the only exceptions being the U.S. and Europe BC experiments in GFDL-CM3 in which there is a weak and insignificant cooling. The Arctic warming is generally larger than the global mean warming (i.e. Arctic amplification occurs), particularly during non-summer months. The models agree that changes in the poleward atmospheric moisture transport are the most important factor explaining the spread in Arctic warming across experiments: the largest warming tends to coincide with the largest increases in moisture transport into the Arctic. In contrast, there is an inconsistent relationship (correlation) across experiments between the local radiative forcing over the Arctic and the simulated Arctic warming, with this relationship being positive in one model (GFDL-CM3) and negative in the other two. Our results thus highlight the prominent role of poleward energy transport in driving Arctic warming and amplification, and suggest that the relative importance of poleward energy transport and local forcing/feedbacks is likely to be model dependent.

期刊论文 2023-09-01 DOI: 10.1088/2752-5295/ace4e8

Since China implemented the Air Pollution Prevention and Control Action Plan in 2013, the aerosol emis-sions in East Asia have been greatly reduced, while emissions in South Asia have continued to increase. This has led to a dipole pattern of aerosol emissions between South Asia and East Asia. Here, the East Asian summer monsoon (EASM) responses to the dipole changes in aerosol emissions during 2013-17 are investigated using the atmosphere model of Com-munity Earth System Model version 2 (CESM2). We show that decreases in East Asian emissions alone lead to a positive aerosol effective radiative forcing (ERF) of 1.59 (+/- 0.97) W m-2 over central-eastern China (25 degrees-40 degrees N, 105 degrees-122.5 degrees E), along with a 0.09 (+/- 0.07)degrees C warming in summer during 2013-17. The warming intensified the land-sea thermal contrast and increased the rainfall by 0.32 (+/- 0.16) mm day-1. When considering both the emission reductions in East Asia and in-creases in South Asia, the ERF is increased to 3.39 (+/- 0.89) W m-2, along with an enhanced warming of 0.20 (+/- 0.08)degrees C over central-eastern China, while the rainfall insignificant decreased by 0.07 (+/- 0.16) mm day-1. It is due to the westward shift of the strengthened western Pacific subtropical high, linked to the increase in black carbon in South Asia. Based on multiple EASM indices, the reductions in aerosol emissions from East Asia alone increased the EASM strength by almost 5%. Considering the effect of the westward shift of WPSH, the dipole changes in emissions together increased the EASM by 5%-15% during 2013-17, revealing an important role of South Asian aerosols in changing the East Asian climate.

期刊论文 2023-03-01 DOI: 10.1175/JCLI-D-22-0335.s1 ISSN: 0894-8755

In this study, we compiled a high-quality, in situ observational dataset to evaluate snow depth simulations from 22 CMIP6 models across high-latitude regions of the Northern Hemisphere over the period 1955-2014. Simulated snow depths have low accuracy (RMSE = 17-36 cm) and are biased high, exceeding the observed baseline (1976-2005) on average (18 +/- 16 cm) across the study area. Spatial climatological patterns based on observations are modestly reproduced by the models (normalized root-mean-square deviations of 0.77 +/- 0.20). Observed snow depth during the cold season increased by about 2.0 cm over the study period, which is approximately 11% relative to the baseline. The models reproduce decreasing snow depth trends that contradict the observations, but they all indicate a precipitation increase during the cold season. The modeled snow depths are insensitive to precipitation but too sensitive to air temperature; these inaccurate sensitivities could explain the discrepancies between the observed and simulated snow depth trends. Based on our findings, we recommend caution when using and interpreting simulated changes in snow depth and associated impacts.

期刊论文 2023-02-01 DOI: http://dx.doi.org/10.1175/JCLI-D-21-0177.1 ISSN: 0894-8755

The impact of various modifications of the JSBACH land surface model to represent soil temperature and cold-region hydro-thermodynamic processes in climate projections of the twenty-first century is examined. We explore the sensitivity of JSBACH to changes in the soil thermodynamics, energy balance and storage, and the effect of including freezing and thawing processes. The changes involve 1) the net effect of an improved soil physical representation and 2) the sensitivity of our results to changed soil parameter values and their contribution to the simulation of soil temperatures and soil moisture, both aspects being presented in the frame of an increased bottom boundary depth from 9.83 to 1418.84 m. The implementation of water phase changes and supercooled water in the ground creates a coupling between the soil thermal and hydrological regimes through latent heat exchange. Momentous effects on subsurface temperature of up to +/- 3 K, together with soil drying in the high northern latitudes, can be found at regional scales when applying improved hydro-thermodynamic soil physics. The sensitivity of the model to different soil parameter datasets is relatively low but shows important implications for the root zone soil moisture content. The evolution of permafrost under preindustrial forcing conditions emerges in simulated trajectories of stable states that differ by 4-6 x 10(6) km(2) and shows large differences in the spatial extent of 10(5)-10(6) km(2) by 2100, depending on the model configuration.

期刊论文 2021-12-01 DOI: 10.1175/JHM-D-21-0023.1 ISSN: 1525-755X

We analyse an ensemble of statistically downscaled Global Climate Models (GCMs) to investigate future water availability in the Upper Indus Basin (UIB) of Pakistan for the time horizons when the global and/or regional warming levels cross Paris Agreement (PA) targets. The GCMs data is obtained from the 5th Phase of Coupled Model Inter-Comparison Project under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Based on the five best performing GCMs, we note that global 1.5 degrees C and 2.0 degrees C warming thresholds are projected in 2026 and 2047 under RCP4.5 and 2022 and 3036 under RCP8.5 respectively while these thresholds are reached much earlier over Pakistan i.e. 2016 and 2030 under RCP4.5 and 2012 and 2025 under RCP8.5 respectively. Interestingly, the GCMs with the earliest emergence at the global scale are not necessarily the ones with the earliest emergence over Pakistan, highlighting spatial non-linearity in GCMs response. The emergence of 2.0 degrees C warming at global scale across 5 GCMs ranges from 2031 (CCSM4) to 2049 (NorESM) under RCP8.5. Precipitation generally exhibits a progressive increasing trend with stronger changes at higher warming or radiative forcing levels. Hydrological simulations representing the historical, 1.5 degrees C and 2.0 degrees C global and region warming time horizons indicate a robust but seasonally varying increase in the inflows. The highest inflows in the baseline and future are witnessed in July. However, the highest future increase in inflows is projected in October under RCP4.5 (37.99% and 65.11% at 1.5 degrees C and 2.0 degrees C) and in April under RCP8.5 (37% and 62.05% at 1.5 degrees C and 2.0 degrees C). These hydrological changes are driven by increases in the snow and glacial melt contribution, which are more pronounced at 2.0 degrees C warming level. These findings should help for effective water management in Pakistan over the coming decades. (c) 2021 Elsevier B.V. All rights reserved.

期刊论文 2021-09-20 DOI: 10.1016/j.scitotenv.2021.147759 ISSN: 0048-9697

Studies of the climate effects of black carbon (BC) in East Asia are not abundant and the effects remain uncertain. Using the Community Earth System Model version 1 (CESM1) with Peking University's emissions data, the fast response of the atmospheric water cycle to anthropogenic BC during summer in East Asia is investigated in this study. Results show that the CESM1-simulated BC concentration and its direct effective radiative forcing are comparable to observations. With the combination of aerosol-radiation interaction (ARI) and non-aerosol-radiation interaction (including aerosol-cloud interaction and surface albedo effects), anthropogenic BC induces a wetter south and drier north pattern over East Asia during summer. Also, anthropogenic BC affects the summer precipitation primarily through changing moisture transport rather than altering local evaporation over East Asia. Using the self-developed atmospheric water tracer method, the responses of dominant moisture sources [the tropical Indian Ocean (TIO) and northwest Pacific] to anthropogenic BC are investigated. Results show that the moisture originating from southwest monsoon-related sources (especially the TIO) is more responsive to anthropogenic BC effects over East Asia. In particular, differing from total precipitation, TIO-supplied precipitation shows a significant response to the ARI of anthropogenic BC over East Asia. Process analyses show that anthropogenic BC affects the southwest monsoon-related moisture supplies primarily via advection, deep convection, and cloud macrophysics. Interestingly, the anthropogenic BC-induced changes of TIO-supplied water vapor in these three processes are all dominated by the ARI over East Asia.

期刊论文 2021-04-01 DOI: 10.1175/JCLI-D-20-0492.1 ISSN: 0894-8755

The rapidly warming Arctic is experiencing permafrost degradation and shrub expansion. Future climate projections show a clear increase in mean annual temperature and increasing precipitation in the Arctic; however, the impact of these changes on hydrological cycling in Arctic headwater basins is poorly understood. This study investigates the impact of climate change, as represented by simulations using a high-resolution atmospheric model under a pseudo-global-warming configuration, and projected changes in vegetation, using a spatially distributed and physically based Arctic hydrological model, on a small headwater basin at the tundra-taiga transition in northwestern Canada. Climate projections under the RCP8.5 emission scenario show a 6.1 degrees C warming, a 38% increase in annual precipitation, and a 19 W m(-2) increase in all-wave annual irradiance over the twenty-first century. Hydrological modeling results suggest a shift in hydrological processes with maximum peak snow accumulation increasing by 70%, snow-cover duration shortening by 26 days, active layer deepening by 0.25 m, evapotranspiration increasing by 18%, and sublimation decreasing by 9%. This results in an intensification of the hydrological regime by doubling discharge volume, a 130% increase in spring runoff, and earlier and larger peak streamflow. Most hydrological changes were found to be driven by climate change; however, increasing vegetation cover and density reduced blowing snow redistribution and sublimation, and increased evaporation from intercepted rainfall. This study provides the first detailed investigation of projected changes in climate and vegetation on the hydrology of an Arctic headwater basin, and so it is expected to help inform larger-scale climate impact studies in the Arctic.

期刊论文 2019-02-01 DOI: 10.1175/JHM-D-18-0187.1 ISSN: 1525-755X

Aerosol processes and, in particular, aerosol-cloud interactions cut across the traditional physical-Earth system boundary of coupled Earth system models and remain one of the key uncertainties in estimating anthropogenic radiative forcing of climate. Here we calculate the historical aerosol effective radiative forcing (ERF) in the HadGEM3-GA7 climate model in order to assess the suitability of this model for inclusion in the UK Earth system model, UKESM1. The aerosol ERF, calculated for the year 2000 relative to 1850, is large and negative in the standard GA7 model leading to an unrealistic negative total anthropogenic forcing over the twentieth century. We show how underlying assumptions and missing processes in both the physical model and aerosol parameterizations lead to this large aerosol ERF. A number of model improvements are investigated to assess their impact on the aerosol ERF. These include an improved representation of cloud droplet spectral dispersion, updates to the aerosol activation scheme, and black carbon optical properties. One of the largest contributors to the aerosol forcing uncertainty is insufficient knowledge of the preindustrial aerosol climate. We evaluate the contribution of uncertainties in the natural marine emissions of dimethyl sulfide and organic aerosol to the ERF. The combination of model improvements derived from these studies weakens the aerosol ERF by up to 50% of the original value and leads to a total anthropogenic historical forcing more in line with assessed values.

期刊论文 2018-11-01 DOI: 10.1029/2018MS001464 ISSN: 1942-2466

Black carbon aerosol (BC) has a significant influence on regional climate changes because of its warming effect. Such changes will feed back to BC loadings. Here, the interactions between the BC warming effect and the East Asian monsoon (EAM) in both winter (EAWM) and summer (EASM) are investigated using a regional climate model, RegCM4, that essentially captures the EAM features and the BC variations in China. The seasonal mean BC optical depth is 0.021 over East Asia during winter, which is 10.5% higher than that during summer. Nevertheless, the BC direct radiative forcing is 32% stronger during summer (+1.85 W m(-2)). The BC direct effect would induce lower air to warm by 0.11-0.12 K, which causes a meridional circulation anomaly associated with a cyclone at 20 degrees-30 degrees N and southerly anomalies at 850 hPa over East Asia. Consequently, the EAM circulation is weakened during winter but enhanced during summer. Precipitation is likely increased, especially in southern China during summer (by 3.73%). Relative to BC changes that result from EAM interannual variations, BC changes from its warming effect are as important but are weaker. BC surface concentrations are decreased by 1%-3% during both winter and summer, whereas the columnar BC is increased in south China during winter. During the strongest monsoon years, the BC loadings are higher at lower latitudes than those during the weakest years, resulting in more southerly meridional circulation anomalies and BC feedbacks during both winter and summer. However, the interactions between the BC warming effect and EAWM/EASM are more intense during the weakest monsoon years.

期刊论文 2018-11-01 DOI: 10.1175/JCLI-D-17-0767.1 ISSN: 0894-8755

The precipitation adjustment and feedback framework is a useful tool for understanding global and regional precipitation changes. However, there is no definitive method for making the decomposition. In this study we highlight important differences which arise in results due to methodological choices. The responses to five different forcing agents (CO2, CH4, SO4, black carbon, and solar insolation) are analyzed using global climate model simulations. Three decomposition methods are compared: using fixed sea surface temperature experiments (fSST), regressing transient climate change after an abrupt forcing (regression), and separating based on timescale using the first year of coupled simulations (YR1). The YR1 method is found to incorporate significant SST-driven feedbacks into the adjustment and is therefore not suitable for making the decomposition. Globally, the regression and fSST methods produce generally consistent results; however, the regression values are dependent on the number of years analyzed and have considerably larger uncertainties. Regionally, there are substantial differences between methods. The pattern of change calculated using regression reverses sign in many regions as the number of years analyzed increases. This makes it difficult to establish what effects are included in the decomposition. The fSST method provides a more clear-cut separation in terms of what physical drivers are included in each component. The fSST results are less affected by methodological choices and exhibit much less variability. We find that the precipitation adjustment is weakly affected by the choice of SST climatology.

期刊论文 2016-10-01 DOI: 10.1002/2016JD025625 ISSN: 2169-897X
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共18条,2页