Permafrost degradation profoundly affects carbon storage in alpine ecosystems, and the response characteristics of carbon sequestration are likely to differ at the different stages of permafrost degradation. Furthermore, the sensitivity of different stages of permafrost degradation to climate change is likely to vary. However, related research is lacking so far on the Qinghai-Tibetan Plateau (QTP). To investigate these issues, the Shule River headwaters on the northeastern margin of the QTP was selected. We applied InVEST and Noah-MP land surface models in combination with remote sensing and field survey data to reveal the dynamics of different carbon (vegetation carbon, soil organic carbon (SOC), and ecosystem carbon) pools from 2001 to 2020. A space-for-time analysis was used to explore the response characteristics of carbon sequestration along a gradient of permafrost degradation, ranging from lightly degraded permafrost (H-SP) to severely degraded permafrost (U-EUP), and to analyze the sensitivity of the permafrost degradation gradient to climate change. Our results showed that: (1) the sensitivity of mean annual ground temperature (MAGT) to climatic variables in the U-EUP was stronger than that in the H-SP and S-TP, respectively; (2) rising MAGT led to permafrost degradation, but increasing annual precipitation promoted permafrost conservation; (3) vegetation carbon, SOC, and ecosystem carbon had similar spatial distribution patterns, with their storage decreasing from the mountain area to the valley; (4) alpine ecosystems acted as carbon sinks with the rate of 0.34 Mg ‧ha 1 ‧a 1 during 2001-2020, of which vegetation carbon and SOC accumulations accounted for 10.65 % and 89.35 %, respectively; and (5) the effects of permafrost degradation from H-SP to U-EUP on carbon density changed from promotion to inhibition.
2024-08BackgroundAntarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs.ResultsSoil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs.ConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo AbstractConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo Abstract
2024-01-12 Web of SciencePermafrost degradation profoundly affects carbon storage in alpine ecosystems, and the response characteristics of carbon sequestration are likely to differ at the different stages of permafrost degradation. Furthermore, the sensitivity of different stages of permafrost degradation to climate change is likely to vary. However, related research is lacking so far on the Qinghai-Tibetan Plateau (QTP). To investigate these issues, the Shule River headwaters on the northeastern margin of the QTP was selected. We applied InVEST and Noah-MP land surface models in combination with remote sensing and field survey data to reveal the dynamics of different carbon (vegetation carbon, soil organic carbon (SOC), and ecosystem carbon) pools from 2001 to 2020. A space-for-time analysis was used to explore the response characteristics of carbon sequestration along a gradient of permafrost degradation, ranging from lightly degraded permafrost (H-SP) to severely degraded permafrost (U-EUP), and to analyze the sensitivity of the permafrost degradation gradient to climate change. Our results showed that: (1) the sensitivity of mean annual ground temperature (MAGT) to climatic variables in the U-EUP was stronger than that in the H-SP and S-TP, respectively; (2) rising MAGT led to permafrost degradation, but increasing annual precipitation promoted permafrost conservation; (3) vegetation carbon, SOC, and ecosystem carbon had similar spatial distribution patterns, with their storage decreasing from the mountain area to the valley; (4) alpine ecosystems acted as carbon sinks with the rate of 0.34 Mg ‧ha 1 ‧a 1 during 2001-2020, of which vegetation carbon and SOC accumulations accounted for 10.65 % and 89.35 %, respectively; and (5) the effects of permafrost degradation from H-SP to U-EUP on carbon density changed from promotion to inhibition.
2023-11-15 Web of Science