共检索到 2

Considering that the dynamic fracture and failure behaviors of frozen soil play a crucial role in the safety and stability of engineering foundations in cold regions, this study aimed to reveal the dynamic tensile mechanical properties and damage failure mechanisms of frozen soil under impact loading. Dynamic Brazilian disk (BD) tests were conducted on frozen soil at different temperatures and loading velocities using a split Hopkinson pressure bar (SHPB) apparatus, followed by numerical simulations using the finite discrete element method (FDEM), focusing on the dynamic tensile deformation characteristics, failure patterns, tensile strength, and energy dissipation mechanisms of the frozen soil. The experimental results indicated that the dynamic tensile mechanical properties of frozen soil were influenced by both temperature and loading velocity. As the temperature decreased and loading velocity increased, the tensile strength of frozen soil significantly increased and showed a linear correlation with the loading velocity. At lower loading velocities, the cracks tended to propagate along the paths of least resistance, forming fewer but longer macrocracks. With increasing loading velocities, the number of cracks markedly increased, and their distribution became more diffuse, leading to a greater extent of failure in the frozen soil. An exponential damage cohesive interface model that considers rate effects was proposed to describe the dynamic tensile fracture mechanical behavior of frozen soil accurately. This model addresses the rate sensitivity of frozen soil and effectively accounts for the temperature effect by considering the volume of ice content and cryogenic suction. A comparison of the FDEM numerical simulation results with the experimental data indicated a good consistency in the overall trends, thus validating the effectiveness and applicability of the FDEM in simulating the dynamic tensile mechanical behavior of frozen soil.

期刊论文 2025-02-01 DOI: 10.1016/j.compgeo.2024.106916 ISSN: 0266-352X

Numerical modelling of laterally loaded piles requires a robust pile-soil interface model. The conventional Coulomb friction model has limitations when predicting the soil-structure interaction at shallow depths for battered mini piles (BMPs) in cohesive (fine-grained) soils. This paper proposes an efficient pile-soil interface model to simulate laterally loaded BMPs in cohesive soils using three-dimensional finite element models (FEM). BMP systems have been commonly used to support lateral load-dominated lightweight superstructures. They are hybrid foundations with BMPs oriented at different inclinations and directions, mimicking tree root systems. FEM results indicate that the Coulomb model is unsuitable for simulating the pile-soil interface at shallow depth due to underprediction of shear resistance. The proposed interface model comprising a surface-to-surface cohesive damage interface with friction captures the lateral performance of BMPs accurately. The proposed model was implemented for a range of pile and soil properties to verify its suitability in understanding the behaviour of BMPs. The ultimate lateral capacity of BMPs increases with penetration length up to 1.5 m. While an increase in diameter and undrained shear strength increases the capacity, the lateral load eccentricity negatively impacts it. Interaction diagrams are developed to serve engineers estimate the ultimate lateral capacity of BMPs.

期刊论文 2025-02-01 DOI: 10.1016/j.compgeo.2024.106922 ISSN: 0266-352X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页