The disposal of excess milk can pose significant challenges for dairy farms during supply chain disruptions, extreme weather events, or plant closures. Improper disposal methods risk causing environmental damage, public health issues, and regulatory violations. This study evaluates three on-farm milk disposal methods, lagoon discharge, composting, and land application, to guide the effective management of large-scale milk disposal events. Laboratory experiments assessed the impact of milk disposal on lagoon water quality, highlighting that lagoon discharge was feasible for large-scale operations but increased total solids and chemical oxygen demand (COD), potentially overloading the system's treatment capacity. Similarly, experiments on composting showed that adding milk enhanced compost quality but required careful monitoring to prevent moisture imbalance and odors. For land application, experiments demonstrated improvements in soil health and plant growth but also revealed risks of nutrient imbalance and gas emissions, particularly at higher application rates. Dividing milk into smaller, multiple applications consistently reduced adverse impacts across all methods. Each method's suitability depends on farm size, infrastructure, and disposal volume. Lagoon discharge is better suited for large farms with sufficient capacity to manage treatment risks. Composting works well for smaller volumes, while land application benefits soil health when carefully managed. The findings have practical applications in helping dairy farms select appropriate disposal strategies, minimizing environmental harm, and complying with regulations during large-scale milk disposal events. Additionally, this study serves as a foundation for creating more comprehensive guidelines and strategies to address milk disposal challenges, fostering sustainable practices across diverse agricultural settings.
Although bioplastics and paper straws have been introduced as alternatives to single-use plastic straws, their potential environmental, economic, and social impacts have not been analyzed. This study addresses this gap by designing a polylactic acid layer interface adhesion on cellulose paper-based (PLA-P) composite straws by a dip molding process. This process is simple, efficient, and scalable for massive production. Optimizing key manufacturing parameters, including ice bath ultrasonic, overlapping paper strips (2 strips), winding angle (60 degrees), soaking time (5 min), and drying temperature (50 degrees C), were systematically evaluated to improve straw quality and manufacturing efficiency. PLA chains were found to deposit onto the cellulose network through intermolecular interactions to form a consistent sandwich structure, which can improve adhesion, water resistance, and mechanical properties. Interestingly, PLA-P straws effectively decomposed in soil and compost environments, with a 35-40 % degradation rate within 4 months. Besides, PLA-P straw residues affected seed germination and plant growth, but no significant toxic effects were detected. Further, microplastics were observed in soil and plant tissues (roots, stems, and leaves), and their possible diffusion mechanisms were explored. The results of a comprehensive life cycle assessment (LCA) and cost analysis showed that the process improvements reduced the ecological footprint of PLA-P straws and showed good prospects for commercial application. The study's findings
Many single-use plastic (SUP) options made of synthetic polymers, bio-based materials, and blends of both are available in the market and used in large quantities. The disintegration of eleven commercial SUP, marketed in Mexico as cups and plates, was investigated in an aerobic home compost environment at a laboratory scale over 180 days. An evaluation of chemical changes, surface morphology, and thermal and mechanical properties was conducted to ascertain the original composition of SUP and the progression of disintegration in samples that are challenging to clean from soil contamination. Furthermore, the impact of residual compost on barley (Hordeum vulgare) plant growth and its correlation with the leaching of heavy metals were explored. The bio-based SUP, but not those made of expanded polystyrene foam, showed a correlation between the disintegration degree (measured by weight loss into particles <2 mm) and a decrease in functional groups (observed by FT-IR), mechanical-thermal stability loss, and surface wear over disintegration time. For instance, the highest disintegration at 180 days was approximately 70 % for wheat bran and palm leaf plates, followed by wheat plates and cellulose-PLA cups (60 %). In addition to the components listed by the manufacturers, the FT-IR and DSC analysis revealed the presence of polyethylene and polypropylene in cellulose cups and sugarcane plates. These components, impede disintegration but contribute to preserving thermal resistance and hydrophobicity during utilization. Compost derived from expanded polystyrene foam SUP, with 90 days of disintegration, was rich in zinc and chromium and significantly decrease in the root length of the barley plant compared to the control. This demonstrates the necessity of considering the impact of the leaching of additives and secondary microplastics into the environment.
Biobased plastics are fully or partially made from biological resources but are not necessarily biodegradable or compostable. Poly (lactic acid) (PLA), one of the most diffused bioplastics, is compostable in industrial environments, but improving degradation in home composting conditions, in soil and in seawater could be beneficial for improving its end of life and general degradability. Blends obtained by the extrusion of PLA with different amounts of poly (butylene succinate-co-adipate) (PBSA) or poly (caprolactone) (PCL) were characterized in terms of their home composting, soil, marine and freshwater biodegradation. The blending strategy was found to be successful in improving the home compostability and soil compostability of PLA. Thanks to the correlations with morphological characterization as determined by electron microscopy, it was possible to show that attaining an almost co-continuous phase distribution, depending on the composition and melt viscosity of the blend components, can enhance PLA degradation in home composting conditions. Tests in marine and freshwater were also performed, and the obtained results showed that in marine conditions, pure PLA is degradable. A comparison of different tests evidenced that salt dissolved in marine water plays an important role in favoring PLA's degradability.
Wastewater treatment plants generate significant amounts of sludge, a residual product that is rich in nutrients, usually considered waste, and traditionally eliminated by storage or incineration, methods that are expensive, environmentally damaging, and often unsustainable. Composting is increasingly recognized as an ecological and durable solution for managing biodegradable waste, including sludge resulting from wastewater treatment. The composting of residual sludge usually requires mixing with bulking agents, such as green waste or agricultural residues, to ensure a well-balanced carbon-nitrogen ratio. This mixture undergoes a controlled aerobic decomposition, sometimes followed by post-treatment, resulting in a stabilized final product that is nutrient-rich and pathogen-free and can be used as soil amendment or fertilizer in different agricultural or landscaping applications. By using composting, communities can reduce elimination costs, reduce greenhouse gas emissions, and minimize the environmental impact of sludge management. This paper reviews recent reported experiences in the laboratory regarding full-scale sludge composting, highlighting the particularities of the processes, the influence factors, the quality of the final product, and the environmental and regulatory constraints. Composting is a sustainable and ecological solution for managing wastewater sludge, contributing to nutrient circularity, and minimizing the environmental impact.
To foster a circular bioeconomy throughout the management of industrial solid wine residues in the wine industry, this work presents the physicochemical and microbiological dynamics of the composting process with white grape pomace, stalks and wastewater treatment plant sludge from the same winery. Three composting windrows of 41 m3 were constructed with 0, 10 and 20% sludge addition. Physicochemical parameters were assessed following the Test Method for the Examination of Composting and Compost (TMECC), and the diversity and dynamics of the bacterial and fungal communities involved in the composting process were assessed via a high-throughput sequencing metabarcoding approach. The addition of sludge increased the moisture content, bulk density, and pH after six months of turned windrow composting. No effect of sludge addition on the macronutrient composition of the compost was observed. The Shannon-Wiener index differed among stages and treatments. Bacterial diversity increased over time, while the fungal community appeared to be highly affected by the thermophilic stage, which led to a reduction in diversity that slightly recovered by the end of the process. Furthermore, the sludge exhibited high bacterial diversity but very low fungal diversity. Consequently, the design of on-site biologically based strategies to better manage wine residues can produce soil amendments, improve fertilization, reclaim damaged soils, and ultimately reduce management costs, making composting an economically attractive and sustainable alternative for waste management in the wine industry. Physicochemical and microbiological studies of sludge and grape pomace in composting are necessary to foster a circular bioeconomy in the wine industry.Sludge addition improved water retention and bulk density, but no effect on macronutrient composition was observed; nonetheless, an increase in beneficial microorganisms was found.Closing the loop in the management of organic residues via composting in the wine industry will improve economic and environmental performance.
Composting is an effective and cost-efficient engineering technique used to treat agricultural waste. It involves the conversion of organic materials into stable compounds and the rapid degradation of organic matter through microorganisms found in feces. The resulting high-quality fertilizer can improve soil physical, chemical, and biological properties. However, the excessive use of heavy metals in livestock breeding can restrict the use of livestock manure for composting. Long-term application of compost products containing heavy metals can cause irreversible damage to farmland soil environments. This paper summarizes several important factors that affect the detoxification of heavy metals in composting and discusses the passivation effect of typical heavy metal passivators. The detoxification mechanism of heavy metals in compost is summarized from two perspectives: the humification effect of heavy metals and the environmental interface effects of microorganisms. This paper provides a foundation for improving the agronomic use value of avian manure aerobic composting products and for studying heavy metal passivation in compost. The application of aerobic composting in the remediation of petroleum-contaminated soil exhibits a dual impact, primarily focusing on the synergistic effects on petroleum hydrocarbon degradation and soil improvement. Such research endeavors are poised to offer innovative solutions towards achieving comprehensive restoration of petroleum-contaminated soils.
Urban and peri-urban lands can be an important source of food production for localised and sustainable food systems, however, their soils can be of poor quality, degraded or damaged by anthropic activities, and little is known about their suitability or safety. This paper aims to contribute to this knowledge gap by assessing the soil remediation capacity and qualities of different types of compost made from urban and peri-urban organic wastes for agroecological food production. Prepared over the course of 2021, and used in 2022 for food growing, five different composts were observed and analysed, in two different farms in the city of Rosario, Argentina. Four raw materials generated largely by local industries were used to make the composts: chicken manure, rumen (cow's stomachs), brewer's bagasse (byproducts of the beer industry) and urban leaves collected from the municipality waste collection. These were mixed in different proportions (all reaching the 20-30 C/N ratio, typical of quality compost) to produce viable growing substrates where radishes and lettuces were grown. The aim of the study was to assess the possibility, quality and limitations to use locally available organic inputs for soil fertility management in agroecological farming, in the context of urbanisation and to assess pathways to develop closed-cycle agroecological agriculture at metropolitan level. Natural manure substrates (raw and composted) were analysed, as well as crops grown and fertilised with each of the substrates. The attributes and limiting factors of each substrate and their response to local soil conditions were compared and physicochemical, biochemical, and microbiological analyses were performed, including among others, the study of microbial biomass, biological activity, biophytotoxicity, pH, aerobic heterotrophs, nitrogen fixation, and the presence of antibiotics, agrochemicals and heavy metals. The results of the analyses show that all the composted materials improved the physical, chemical and biological properties. However, in some cases, pollutants were present even after composting. Analysis carried out on the vegetables generally indicate undetectable levels or levels below the admissible limits, demonstrating the filtering capacity of the different composts and the soil.