A set of direct shear tests on the soil-geotextile interface (SGI) were conducted using a temperature-controlled constant normal stiffness (CNS) direct shear apparatus. This was done in order to evaluate the effects of normal stiffness, initial normal stress, soil water content, and temperature on SGI shear behavior and microdeformation patterns. The observations indicate that all shear stress-shear displacement curves demonstrate strain-hardening characteristics, with SGI cohesion and friction angle increasing at higher normal stiffness and lower temperatures. At freezing conditions, water content significantly affects the interface friction angle, while this effect is minimal at positive temperatures. Normal stress increases with higher water content, lower temperatures, and higher normal stiffness. Shear stress initially rises with normal stress before decreases, with a more pronounced rise under sub-zero conditions. Normal stress shrinkage shows a positive correlation with normal stiffness. Micro-deformation analysis of soil particles at the interface indicates significant strain localization within the shear band, which is less pronounced under sub-zero temperatures compared to positive temperatures. These patterns of normal displacement vary across analysis points within the shear band, with the macroscopic normal displacement reflecting a cumulative effect of these microscopic variations.
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading, such as during earthquakes, we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness (CNS) conditions. We analyzed the evolution of shear stress, normal stress, stress path, dilatancy characteristics, and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles. The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle, with the shear strength at a positive angle exceeding that at a negative angle during shear cycles. As the number of cycles increases, the shear strength decreases rapidly, and the difference between the varying angles gradually decreases. Dilation occurs in the early shear cycles (1 and 2), while contraction is the main feature in later cycles (3-10). The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles. The joint angle determines the asperities on the rupture surfaces and the block size, and thus determines the subsequent shear failure mode (block crushing and asperity degradation). At positive angles, block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles. Therefore, the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).