In situ resource utilization of lunar regolith provides a cost-effective way to construct the lunar base. The melting and solidifying of lunar soil, especially under the vacuum environment on the Moon, are the fundamentals to achieve this. In this paper, lunar regolith simulant was melted and solidified at different temperatures under a vacuum, and the solidified samples' morphology, structure, and mechanical properties were studied. The results indicated that the density, compressive strength, and Vickers hardness of the solidified samples increased with increasing melting temperature. Notably, the sample solidified at 1400 degrees C showed excellent nanohardness and thermal conductivity originating from the denser atomic structure. It was also observed that the melt migrated upward along the container wall under the vacuum and formed a coating layer on the substrate caused by the Marangoni effect. The above results proved the feasibility of employing the solidified lunar regolith as a primary building material for lunar base construction.
The large-scale development of urban underground spaces has resulted in hundreds of millions of cubic meters of accumulated shield soil dreg waste, occupying huge amounts of land resources and potentially causing groundwater pollution and soil salinization. In this study, shield soil dreg waste is recycled and activated to substitute cement in ultra-high performance concrete, aiming to promote solid waste management and sustainable construction. The slump, mechanical performance, and autogenous shrinkage of the concrete are investigated through macro-scale tests, and the underlying mechanism is revealed via micro-scale experiments. The incorporation of calcined shield soil dreg reduces flowability and leads to a 10.2 % deterioration in compressive strength of the ultra-high performance concrete while mitigating autogenous shrinkage. The primary reason is due to the low CaO content of shield soil dreg, which limits the formation of calcium silicate hydrate, and its high SiO2/Al2O3 content slows hydration kinetics. The environmental and economic benefits of the concrete are determined via life cycle analysis. Recycling shield soil dreg waste into concrete results in about 35 % reduction in carbon emission and 22 % reduction in energy consumption. According to multi-criteria assessment, the overall performance of the concrete considering economic cost, environmental benefit, as well as physical and mechanical properties increases compared to the pristine concrete, achieving well-balanced economic feasibility, environmental sustainability, and engineering performance. The findings of this study provide an effective approach for recycling shield soil dreg and preparing low-carbon concrete, thus promoting solid waste management and sustainable construction.
When uranium heap leaching tailings (UHLT) are used as filling aggregates, their discontinuous and non-uniform grading characteristics can easily cause segregation, settlement of the filling slurry, and deterioration of cemented body mechanical properties, seriously affecting the safety of the filling system and filling quality. To address the bimodal distribution defects of UHLT, characterized by excessively high proportions of coarse and fine particles with a lack of intermediate particle sizes, this study simulated its particle size characteristics using inert materials such as loess, fine sand, sand, and gravel. The study systematically verified the impact of grading defects on flow stability and mechanical properties. The filling slurry exhibited a spread of 222.5 mm with obvious segregation, and the uniaxial compressive strength at 28 days was 9.09 MPa. To overcome this bottleneck, this research innovatively proposed optimization strategies of qualitative reconstruction (QLR) and quantitative reconstruction (QTR). QLR involves adding medium-sized particles in stages and replacing equal amounts of coarse and fine particles, reducing the spread to 202.7 mm under an optimized quantity of 50 g, with a uniaxial compressive strength of 6.84 MPa at 3 days. However, slurry segregation still occurred. QTR established a multi-particle-size independent calculation model based on the extended Talbot gradation theory, and through the staged quantitative reconstruction of UHLT with aggregate having a grading index of 0.4, the spread decreased to 168.4 mm without segregation, achieving a uniaxial compressive strength of 5.58 MPa at 3 days and 9.11 MPa at 28 days. The study shows that both QLR and QTR can effectively improve the grading of UHLT, with QLR being simple and QTR offering precise control. The research provides new approaches for regulating filling slurries with similar discontinuous and non-uniform graded aggregates, and its innovative methodology can be extended to multiple fields such as concrete aggregate optimization.
The accumulation of waste glass (WG) from construction and demolition waste is detrimental to the environment due to its imperishable nature; therefore, it is crucial to investigate a sustainable way to recycle and reuse the WG. To address this issue, this study examined the mechanical strength, microstructural characteristics, and environmental durability-specifically under wet- dry (WD) and freeze-thaw (FT) cycles-of WG obtained from construction and demolition waste, with a focus on its suitability as a binding material for soil improvement applications. Firstly, sand and WG were mixed, and an alkali solution was injected into the mixture, considering various parameters, including WG particle size, mixing proportions, sodium hydroxide (NaOH) concentration, and curing time. Subsequently, the effect of WG grain sizes on micro- morphology characteristics and mineralogical phases was evaluated before and after the treatment through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and ultrasonic pulse velocity (UPV). The results revealed that reducing the WG particle size and increasing the WG/S ratio significantly improved the strength of the WG-treated samples. Additionally, decreasing the NaOH concentration and extending the curing time also positively influenced their strength. The UCS test results indicate that the particle size of WG significantly influenced the strength development of the samples, as the maximum compressive strength increased from 1.42 MPa to 7.82 MPa with the decrease in particle size. Although the maximum UCS values of the samples varied with different WG particle sizes, the values exceed the minimum criterion of 0.80 MPa required for use as a road substructure, as specified in the ASTM D4609 standard. Moreover, as WG grain size decreased, more geopolymer gels formed, continuing to fill the voids and making the overall structure denser, and the changes during geopolymerization were confirmed by XRD, SEM, FTIR, and UPV analysis. The optimum WG/S ratio was found to be 20 %, with strength increasing by approximately 3.88 times higher as the WG/S ratio shifted from 5 % to 20 %. In addition, the optimum NaOH concentration was determined to be 10 M, as higher molarities led to a decrease in strength. Moreover, UPV results indicate that WG-treated sand soils exhibited UPV values 9.4-13 times greater than untreated soils. The WD and FT test results indicate that WG-treated samples experienced more rapid disintegration in the WD cycle than in the FT cycle; however, a decrease in WG particle size resulted in reduced disintegration effects in both WD and FT conditions. In both the FT and WD cycles, the declining trend exhibited a stable tendency around the eighth cycle. Nevertheless, the WD cycling damage considerably intensified disintegration, causing a profound deterioration in the structural integrity of the samples. As a result, repeated WD cycles lead to the formation of microcracks, which progressively weaken soil aggregation and reduce the overall strength of the samples. Consequently, this green and simple soil improvement technique can provide more inspiration for reducing waste and building material costs through efficient use of construction and demolition waste.
Construction and Demolition Wastes (CDW) serves as an effective filler for highway subgrades, demonstrating commendable performance characteristics. The efficient utilization of CDW not only contributes to environmental sustainability but also yields significant economic benefits. This study employs discrete element simulation to develop a triaxial sample model comprising particles with four distinct levels of sphericity. By varying the combinations of sphericity, brickconcrete ratio, and void ratio, triaxial simulation tests are conducted, and the critical state soil mechanics framework is applied to fit the critical state line (CSL) of the samples. The results indicate that sphericity, brick-concrete ratio, and void ratio substantially influence the macroscopic mechanical properties of CDW. Notably, as sphericity increases, the peak deviatoric stress of the samples decreases, and significant volume deformation occurs. The slope of the CSL in the q-p ' plane diminishes, while the slopes of both forms of the CSL in the e-log p ' plane increase. Furthermore, a decrease in the brick-concrete ratio enhances the anti-deformation and compressive capacities of the samples. As the brick-concrete ratio decreases, both the slopes and intercepts of the CSL in the e-log p ' plane exhibit an upward trend. Conversely, an increase in the void ratio leads to a reduction in the overall strength and anti-deformation capacity of the specimens, an increase in the compressibility of the specimen volume, an elevation of the CSL slope on the q-p ' plane, and a gradual increase in both the slope and intercept of the semilogarithmic form of the CSL on the e-log p ' plane, as well as a gradual increase in the slope of the power-law form of the CSL.
The solidification and molding of lunar regolith are essential for constructing lunar habitats. This study introduces an innovative lunar regolith molding technique that synergistically combines solar concentration, flexible optical fiber bundle energy transfer, and powder bed fusion. A functional prototype is developed to validate the proposed scheme. Systematic experiments including fixed beam spot melting, line melting, surface melting, and body melting are conducted using simulated basalt lunar regolith. Through in-situ observation of the melt pool's formation, evolution, and expansion dynamics, we identify a sequential transformation mechanism on the powder bed's surface: initial curling evolves into detachment from the bed, subsequent incorporation into a molten droplet, and ultimate solidification. A comprehensive evaluation of density and mechanical properties across multiple parameter combinations reveals that energy flux density of 3.33 MW/m2 with a scan speed of 30 mm/min, inter-track spacing of 3 mm, and layer thickness of 2 mm enables the production of structurally integral samples with continuous morphology. The resulting specimens demonstrate a maximum compressive strength of 4.25 MPa and a density of 2.31 g/cm3. This solar-powered additive manufacturing approach establishes a viable reference framework for large-scale on-site construction of lunar research stations.
As lunar exploration advances, the development of durable and sustainable lunar surface architecture is increasingly critical, with a particular focus on material selection and manufacturing processes. However, current technologies and designs have yet to deliver an optimal solution. This study presented an innovative designs pattern for laser-sintered lunar soil bricks, namely a sintered glass outer layer and a core composed of lunar soil particles. For structural reinforcement purposes, a combined system of columns and slabs was implemented to improve the overall strength characteristics. This approach leverages the low thermal conductivity of lunar regolith particles in conjunction with the thermal stability, radiation resistance, and mechanical strength characteristics of glass. In this case, our simulations of heat conduction demonstrated a marked improvement in the thermal insulation properties of the new lunar soil bricks. The low thermal conductivity of lunar regolith effectively serves as an insulating layer, while the column, plate and glass outer layer, with their higher thermal conductivity, enable rapid thermal response across the entire structure and enhance spatial heat transfer uniformity. We further investigated the influence of structural variations on heat transfer mechanisms, revealing that the thickness of the glass layer exclusively modulates the heat transfer rate without altering its spatial distribution. Additionally, comparative analysis of all designed samples demonstrated that the novel sample displays superior thermal insulation properties, reduces average energy consumption by three quarters, and maintains adequate mechanical strength, alongside the proposal of a suitable assembly and construction methodology. Consequently, we believe that glassy composites exhibit substantial potential for space construction. These findings offer valuable insights and recommendations for material design in lunar surface construction.
During pile installation, construction disturbances alter soil mechanical properties near the pile, significantly affecting the dynamic response of the pile. This paper develops a three-dimensional (3D) analytical model to investigate the vertical dynamic response (VDR) of a pile in radially inhomogeneous saturated soil. Firstly, by employing the separation variable method and incorporating the continuity and boundary conditions of the soilpile system, the exact solution of the whole system in the frequency domain was derived. Subsequently, the timedomain velocity response under semi-sinusoidal vertical excitation is obtained using Fourier inverse transform and the convolution theorem. The accuracy and superiority of the proposed solution were validated through comparison with previous analytical solutions. Finally, the developed solution is then used to examine the impact of parameters of saturated soil and pile on the VDR of a pile. The results demonstrate that the proposed saturated model better captures the VDR of a pile in radially inhomogeneous saturated soil compared to the single-phase model. The VDR of a pile is significantly influenced by the pore water, porosity, disturbed degree and range of the saturated soil, as well as the elastic modulus of the pile.
Lunar soil-based polymers, created using lunar soil as a precursor combined with highly automated 3D printing construction methods, hold great potential for lunar base construction. However, technical challenges such as ambiguities in characterizing rheological behavior and difficulties in regulation limit their 3D printing workability. To address these issues, the applicability of the Bingham model, Herschel-Bulkley (H-B) model, and a modified Bingham model to TJ-1 simulated lunar soil-based polymer was investigated by analyzing the fluidity variation. The effects of the solid-liquid ratio, Ca(OH)2, and Hydroxypropyl Methyl Cellulose ether (HPMC) on the 3D printing performance of the simulated lunar soil-based polymer were explored through one-way tests and standard deviation analysis. The results show that the modified Bingham model more accurately describes the rheological properties of TJ-1 simulated lunar soil-based polymer. HPMC proved to be an effective thixotropic agent for adjusting the 3D printing performance of the polymer. The yield stress and plastic viscosity of the polymer doped with 0.15 % HPMC were 3.577 Pa and 0.733 Pa s, respectively, meeting the requirements for printability. The yield stress and plastic viscosity of the simulated lunar soil polymers ranged from 1.84 to 3.58 Pa and 0.23-0.73 Pa s, respectively. Moreover, the compressive and flexural strengths of the simulated lunar soil polymers were significantly improved by adding Ca(OH)2. The optimal ratios for 3Dprinted simulated lunar soil polymers are a water-cement ratio of 0.30, 10 % NaOH, 8 % Na2SiO3, 6 % Ca(OH)2, and 0.10 % HPMC. Under these conditions, the 28-day compressive strength and flexural strength were 19.5 MPa and 6.9 MPa, respectively, meeting the strength standards of ordinary sintered bricks.The research results could provide a theoretical basis for the subsequent optimization of the simulated lunar soil base polymer mixing ratios for 3D printing.
The cement-stabilization technique is employed on natural and recycled granular materials to improve their mechanical properties. The strength of these materials is assessed by the unconfined compressive strength on laboratory compacted specimens, typically after 7 days of curing. Standards and technical specifications specify different values of specimen height and diameter and different loading modes of testing. This makes the comparison between different materials and with the acceptance limits of technical specifications difficult. The research investigates the effect of specimen size and loading mode on the unconfined compressive strength of both natural and recycled cement-stabilized granular materials. The results revealed significant differences in strength due to variations in specimen size and loading mode. As expected, an increase in specimen slenderness resulted in a decrease in compressive strength. A linear regression model was developed to quantify the effect of the experimental variables on the compressive strength of the two cement-stabilized materials.