共检索到 7

The discrete element method (DEM) has demonstrated significant advantages in simulating soil-tool interaction and an appropriate contact model notable affected the simulation accuracy. The accuracy of numerical simulation is compromised due to the variations in soil properties when tillage implements are employed in clay-moist soil conditions. This study aims to establish a discrete element model of clay-moist soil based on the Edinburgh Elasto-Plastic Adhesion (EEPA) contact model. Calibration tests using a combination of direct shear tests and cone penetration tests were conducted to identify sensitive parameters that need to be calibrated in the model and analyze the effects of each parameter. The results indicated that contact plasticity ratio and surface energy had significant influence on representing the mechanical properties of clay-moist soil. Then, by utilizing scanning technology to acquire furrow shape data, soil bin test was conducted to validate the reliability of the calibration parameters. Using sensitive parameters as variables, the actual value of clay-moist soil with a moisture content of 33 % as the target value obtained from experimental tests. The optimal combination was: the coefficient of static friction of 0.45, the coefficient of rolling friction of 0.18, and the surface energy of 27.95 J.m-2, the contact plasticity ratio of 0.59. The relative error between the simulated draft force value and the actual measured value was 7.98 %, and the relative errors in the furrow type parameters did not exceed 5 %. The accuracy of the calibration results was verified through comparative analysis of simulation and empirical results. This study provides a scientific approach for employing DEM in modeling clay-moist soil-tool interaction.

期刊论文 2025-10-01 DOI: 10.1016/j.compag.2025.110518 ISSN: 0168-1699

The mechanical behavior of Methane Hydrate-Bearing Sediment (MHBS) is essential for the safe exploitation of Methane Hydrate (MH). In particular, the pore size and physicochemical characteristics of MHBS significantly influence its mechanical behavior, especially in clayey grain-cementing type MHBS. This study employs the Distinct Element Method (DEM) to investigate both the macroscopic and microscopic mechanical behavior of clayey grain-cementing type MHBS, focusing on variations in pore size and physicochemical characteristics. To accomplish this, we propose a Thermo-Hydro-Mechanical-Chemical-Soil Characteristics (THMCS) DEM contact model that incorporates the effects of pore size and physicochemical characteristics on the strength and modulus of MH. This THMCS model is validated using experimental data available in the literature. Using the proposed contact model, we conducted a series of investigations to explore the mechanical behavior of MHBS under conventional loading paths, including isotropic and drained triaxial tests using the DEM. The numerical results indicate that smaller pore sizes and lower water content-key physicochemical characteristics resulting from variations in electrochemical properties and the intensity of the electric field-can lead to reduced shear strength and stiffness due to the increased breakage of aggregates and weakened cementation. Additionally, heating was found to further accelerate the process of structural damage in MHBS.

期刊论文 2025-02-01 DOI: 10.1016/j.compgeo.2024.106943 ISSN: 0266-352X

Through extensive laboratory experiments on unsaturated soils, it has been discovered that particle shape and matric suction significantly influence their mechanical properties. Prior studies have typically examined these factors individually and from a macroscopic perspective. In this study, the aspect ratio is utilized as a representative parameter for particle shape. Employing the Hill constitutive model, a series of triaxial shear numerical experiments of simulations on unsaturated soil were conducted. The results indicate a non-linear relationship between peak deviator stress and aspect ratio, with peak deviator stress initially increasing, then decreasing, and reaching its maximum at an aspect ratio of 1.2. The patterns observed in friction angle, cohesion, and critical stress ratio in relation to aspect ratio mirror those seen in peak deviator stress, with the friction angle exhibiting fluctuations as the particle aspect ratio increases. At a matric suction of 0 kPa, changes in particle shape have a negligible impact on mechanical properties. However, as matric suction increases, the volumetric strain's dilatancy turning point is advanced, and the effect of particle shape becomes progressively more pronounced. Under varying conditions of particle shape and matric suction, the alteration in bedding angle affects the peak deviator stress and stress ratio, albeit the extent of this influence is limited.

期刊论文 2025-02-01 DOI: 10.1007/s10064-024-04069-y ISSN: 1435-9529

The sharp morphological features of lunar dust particles generate significant elastic-plastic contact forces and deformations upon contact with material surfaces, which considerably affect the mechanical properties of lunar dust particles, including their contact, collision, adhesion, transport, and wear characteristics. Despite these severe effects, valid models considering the contact characteristics of typical sharp-featured lunar dust particles are currently lacking. This study proposes an elastic-plastic contact model for nonrotationally symmetric lunar dust particles showing typical sharp features. Detailed derivations of the expressions for various physical responses observed when lunar dust particles establish normal contacts with elastic and elastic-plastic half-spaces under adhesive conditions are also provided. These include derivations for elastic forces, elastic-plastic forces, contact areas, pull-off forces, residual displacements, and plastic deformation areas. Furthermore, the tangential pull-off force during the tangential loading of lunar dust particles is derived, and the tangential contact characteristics are explored. Comparisons of the results of the proposed model with those of previous experiments reveal that the proposed model shows errors of only 6.06 % and 1.03 % in the maximum indentation depth and residual displacement, respectively. These errors are substantially lower than those of conventional spherical models (60.30 % and 60.13 %, respectively), confirming the superior accuracy of the proposed model. Furthermore, the discrete element method is employed to analyze the effects of normal and tangential contacts, dynamic characteristics, and plastic deformations on the considered lunar dust particles. The results are then compared with those of existing contact models. They reveal that maximum elastic-plastic forces under normal contact conditions are positively correlated with the initial velocity but negatively correlated with the lateral angle. Furthermore, the tangential pull-off force is positively correlated with the normal force and surface energy. In addition, the contact duration of lunar dust particles is positively correlated with their initial velocities, while the residual displacement is negatively correlation. For instance, as the initial velocity increases from 10 to 50 m/s, the maximum elastic-plastic force increases from 37.64 to 321.72 mN. Comparisons of the proposed model with other contact models reveal that the maximum elastic-plastic force of the elastic-plastic triangular pyramid model is only 14.93 % that of the cylindrical model, 34.23 % that of the spherical model, and 76.27 % that of the conical model, indicating significant reductions in the maximum elastic-plastic force owing to the plastic deformations of particles with typical sharp features. Overall, the results of this study offer crucial insights into the mechanical characteristics of nonspherical lunar dust particles under various contact conditions, such as elastic-plastic and adhesive contacts, and can guide in situ resource utilization on the lunar surface and for craft landings.

期刊论文 2025-01-01 DOI: 10.1016/j.actaastro.2024.10.059 ISSN: 0094-5765

Cemented granular materials play an important role in both natural and engineered structures, as they are able to resist traction forces. However, modeling the mechanical behavior of such materials is still challenging, and most of existing constitutive models follow phenomenological approaches that unavoidably disregard the microstructural mechanisms taking place on the bonded grains scale. This paper presents a multiscale approach applicable to any kind of granular materials with solid bonds between particles. Inspired from the H-model, this approach allows simulating the behavior of cemented materials along various loading paths, by describing the elementary mechanisms taking place between bonded grains. In particular, the effect of local bond failure process on the macroscopic response of the whole specimen is investigated according to the bond strength characteristics.

期刊论文 2024-08-01 DOI: 10.1016/j.compgeo.2024.106481 ISSN: 0266-352X

Due to the presence of tiny gaps at the interface of two layers of saturated soil, water seepage occurs at a slower rate within these gaps, resulting in laminar flow at the interface. Based on the Hagen-Poiseuille law, a general imperfect flow contact model was established for layered saturated soil interfaces by introducing the flow contact transfer coefficient R omega and the flow partition coefficient eta omega. The investigation focused on the thermal consolidation behavior of layered saturated soil foundations under variable loadings considering the flow contact resistance effect at the interface. By employing the Laplace transform and its inverse transform, a semi-analytical solution for the thermal consolidation of layered saturated soil foundations was derived. In the context of a two-layer soil system, the effects of R omega, eta omega, and permeability coefficient k on the consolidation process were examined. The obtained results were then compared with three other interfacial contact models, thereby confirming the rationality of the presented model. The study findings revealed that the flow contact resistance effect leads to a clear jump in the pore water pressure. Furthermore, an increase in R omega and a decrease in eta omega were found to significantly enhance displacement and pore water pressure, while having minimal impact on the temperature increment. These insights contribute to a more comprehensive understanding of the thermal consolidation behavior of layered saturated soil foundations and underscore the significance of accounting for the flow contact resistance effect in such analyses.

期刊论文 2024-04-01 DOI: 10.1002/nag.3677 ISSN: 0363-9061

Introduction. The discrete element method is the most promising method for modeling soil tillage. With the use of DEM modeling it is possible to create a digital twin for technological process of interaction of tools with soil, analyze the operation of tillage and seeding machines having various design and technological parameters, and predict energy and agrotechnical indicators of etheir work. To improve the prediction accuracy, it is necessary to compare the obtained data with the results of field experiments. Aim of the Study. The study is aimed at developing a digital twin of the tillage bin through using the discrete element method and optimizing the main design and technological parameters of the dual -level opener. Materials and Methods. To simulate the process of the soil -opener interaction, there was used the discrete element method; the advanced Hertz - Mindlin model was used as a contact model. For DEM modeling there is created a virtual tillage bin, which is filled with spherical particles of 10 mm diameter with the specified rheological parameters of the selected contact model. The main design factors for carrying out computer experiments in order to optimize them were the opener blade rake angle alpha and the furrow rake angle beta . The opener traction resistance R was chosen as the output optimization parameter. Results. Implementation of multifactor experiments on the digital twin of the soil bin in the Rocky DEM program allowed to optimize the design and technological parameters of the dual -level opener: bit inclination angle alpha = 75(o ), furrow former inclination angle beta = 21(o) , vertical distance between the bit and furrow former Delta a = 11 - 14 mm. Discussion and Conclusion. As a result of the modeling, it was found that the opener traction resistance increases in quadratic dependence on the opener operating speed and surface energy of the contact model.

期刊论文 2024-01-01 DOI: 10.15507/2658-4123.034.202402.229-243 ISSN: 2658-4123
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页