共检索到 8

The long-term stability of the cast-in-place footings in permafrost regions has received much attention due to its climate sensitivity. The current research lacks long-term data validation, especially in the context of climate change. Based on the 13-year (2011-2023) temperature and deformation monitoring data from the Qinghai-Tibet Power Transmission Line, this study investigates the characteristics of permafrost variation and its impact on the stability of tower footings under the cooling effect from thermosyphons. The results reveal that the thermosyphons effectively reduce the ground temperature around the footings. After the first freeze-thaw cycle, the soil around the tower footings completed refreezing and maintained a frozen state. In the following 13 years, the ground temperature continued to decrease due to the cooling effect of thermosyphons. The duration notably exceeded the previously predicted 5 years. The temperature reduction at the base of the footings corresponded well with the frost jacking of the tower footings and could be divided into three distinct phases. In phase 1, the ground temperature around the footings rapidly reduced, approaching that of the natural field, while the footings experienced pronounced deformation. In phase 2, the ground temperature decreased at a faster rate, and the deformation rate of the footings slowed down. In phase 3, the frost jacking of the footings gradually retarded with the decrease in base temperature. Additionally, the ground temperature differences of over 1 degrees C were observed among different tower footings, which may lead to the differential deformation among the tower footings. The ground temperature differentiation is attributed to the difference in solar radiation intensity, which is shaded by the tower structure from different directions. This study provides theoretical support and empirical accumulation for the construction and maintenance of tower footings in permafrost regions.

期刊论文 2024-10-01 DOI: 10.1016/j.accre.2024.08.002 ISSN: 1674-9278

Permafrost in Northeastern China is not only controlled by latitude and elevation, but also locally environmental factors, such as vegetation cover and human activities. During 2009-2022, thinning active layer, increasing annual maximum frost depth in talik zones and lowering ground temperature above the depth of dividing point (DDP) between permafrost cooling and warming have been observed in many places, possibly due to the global warming hiatus (GWH). However, the responses of permafrost below DDP did not show a clear trend to the GWH, despite an evident ground warming. The warming and degradation of permafrost below DDP in the Da Xing'anling Mountains are more strongly influenced by the overall climate warming than by regional GWH. This study improves our understanding of changing permafrost temperature and its drivers. It also helps to provide data support and references for the management of the ecological and hydrological environment of the northern Da Xing'anling Mountains and the Heilongjiang-Amur River Basin.

期刊论文 2024-06-01 DOI: 10.1088/1748-9326/ad42b6 ISSN: 1748-9326

Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation. We assess the cooling power of forest cover at both the local and global scales. Our differentiated approach based on the use of multiple diagnostic metrics suggests that surface albedo effects are typically overemphasized at the expense of top-of-cloud reflectivity. Our analysis suggests that carbon sequestration and top-of-cloud reflectivity are the principal drivers of the global cooling power of forests, while evapotranspiration moves energy from the surface into the atmosphere, thereby keeping sensible heat from forming on the land surface. While deforestation brings surface warming, wetland restoration and reforestation bring significant cooling, both at the local and the global scale.image

期刊论文 2024-02-01 DOI: 10.1111/gcb.17195 ISSN: 1354-1013

The atmospheric boundary layer (ABL) is one of the most fundamental yet complex components of the Earth's atmosphere. Hence, studying the ABL has important theoretical value and practical significance. In this paper, the structural characteristics and heating (cooling) rate of the ABL in summer over the Northern Tibetan Plateau (NTP) were analysed using radiosonde observation data from the Amdo and Nagqu regions. The results indicate that the summertime ABL height over the NTP exhibited obvious diurnal variations, with the ABL height during the dry season being greater than that during the rainy season. The maximum convective boundary layer (CBL) height during the daytime reached 3200 m and 2500 m in the dry and rainy seasons, respectively, and the mean maximum CBL height was approximately 2500 m; the maximum stable boundary layer (SBL) height at night reached 900 m, and the mean maximum SBL height was approximately 500 m. The wind speed dominated by westerly wind in the dry season was greater than that dominated by easterly wind in the rainy season, and the zonal (meridional) wind speed (shear) on sunny days was greater than that on cloudy days. The inverse humidity phenomenon occurred in both Amdo and Nagqu, and the strong humidity inversion occurred mainly at midnight on sunny days and at noon on cloudy days. The heating (cooling) rate of the ABL displayed obvious diurnal variations, with the rates being greater on sunny days and lower on cloudy and rainy days. Furthermore, the mean values of the daytime heating rate and nighttime cooling rate of the ABL were relatively equal, indicating that the atmospheric energy budget was, for the most part, balanced.

期刊论文 2020-04-01 DOI: http://dx.doi.org/10.1016/j.atmosres.2022.106045 ISSN: 0169-8095

The Qinghai-Tibet Railway (QTR) is the highest plateau artificial facility, connecting Lhasa and Golmud over Qinghai-Tibet Plateau. Climate change and anthropogenic activities are changing the condition of plateau, with potential influences on the stabilities of QTR. Synthetic aperture radar interferometry (InSAR) technique could retrieve ground millimeter scale deformation utilizing phase information from SAR images. In this study, the structure and deformation features of QTR are retrieved and analyzed using time-series interferometry with Sentinel-1A and TerraSAR-X images. The backscattering and coherence features of QTR are analyzed in medium and very high-resolution SAR images. Then, the deformation results from different SAR datasets are estimated and analyzed. Experimental results show that some of the QTR sections undergo serious deformation, with the maximum deformation rate of -20 mm/year. Moreover, the detailed deformation feature in the Beiluhe has been analyzed as well as the effects of different cooling measurements underline QTR embankment. It is also found that embankment-bridge transition along QTR is prone to undergo deformation. Our study demonstrates the application potential of high-resolution InSAR in deformation monitoring of QTR.

期刊论文 2019-12-01 DOI: 10.1109/JSTARS.2019.2954104 ISSN: 1939-1404

The Antarctic Peninsula (AP) is often described as a region with one of the largest warming trends on Earth since the 1950s, based on the temperature trend of 0.54 degrees C/decade during 1951-2011 recorded at Faraday/Vernadslcy station. Accordingly, most works describing the evolution of the natural systems in the AP region cite this extreme trend as the underlying cause of their observed changes. However, a recent analysis (Turner et al., 2016) has shown that the regionally stacked temperature record for the last three decades has shifted from a warming trend of 032 degrees C/decade during 1979-1997 to a cooling trend of -0.47 degrees C/decade during 1999-2014. While that study focuses on the period 1979-2014, averaging the data over the entire AP region, we here update and reassess the spatially-distributed temperature trends and inter-decadal variability from 1950 to 2015, using data from ten stations distributed across the AP region. We show that Faraday/Vernadsky warming trend is an extreme case, circa twice those of the long-term records from other parts of the northern AP. Our results also indicate that the cooling initiated in 1998/1999 has been most significant in the N and NE of the AP and the South Shetland Islands (>0.5 degrees C between the two last decadeS), modest in the Orkney Islands, and absent in the SW of the AP. This recent cooling has already impacted the cryosphere in the northern AP, including slow-down of glacier recession, a shift to surface mass gains of the peripheral glacier and a thinning of the active layer of permafrost in northern AP islands. (C) 2016 Elsevier B.V. All rights reserved.

期刊论文 2017-02-15 DOI: 10.1016/j.scitotenv.2016.12.030 ISSN: 0048-9697

Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximate to 2-3 degrees C) of lower troposphere (below 3km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading scenario could be understood as a dynamical feedback of EAL-induced stratification of lower troposphere. Further, the observed radiative effect of EALs increases the stability of the lower troposphere, which could modulate the large-scale atmospheric dynamics during monsoon onset period. These findings encourage follow-up studies on the implication of EALs to the Indian summer monsoon dynamics using numerical models.

期刊论文 2016-07-16 DOI: 10.1002/2015JD024711 ISSN: 2169-897X

Projections of aerosol emissions for 2030 have been recently generated and implemented in a comprehensive chemistry-transport model to analyse the future evolution of the aerosol radiative forcing over Europe. In this study, numerical developments based on an off-line coupling between the regional chemistry-transport model CHIMERE (extended by an aerosol optical module) and the radiative transfer code GAME have been implemented in order to simulate the interaction of physico-chemically resolved aerosols with radiation at regional scale. This novel approach is used to examine the shortwave aerosol direct radiative forcing response to two air pollution reduction scenarios for 2030 over Europe. Our study suggests that measures introduced to improve future air quality could have large implication on the aerosol climate forcing over Europe. Results of simulations indicate that abatement of aerosols in the near future could lead to a decrease of the aerosol cooling effect at the surface and at the top of the atmosphere over the main anthropogenic emission regions. Especially over the Moscow region, different strategies of reduction for scattering sulphate and absorbing black carbon aerosols between the two scenarios could result, however, in either a reduction or an enhancement in atmospheric radiative forcing. (C) 2012 Elsevier Ltd. All rights reserved.

期刊论文 2012-12-01 DOI: 10.1016/j.atmosenv.2012.08.046 ISSN: 1352-2310
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页