活动层作为多年冻土与大气系统之间能量和水分交换通道,其内部的水热状况是控制水循环和地表能量平衡的主要因素,并直接影响着寒区生态环境、水文过程以及多年冻土的稳定性。利用一维水热耦合模型CoupModel,对青藏高原风火山试验点活动层土壤剖面温湿度进行了模拟。模拟效率参数表明模拟结果很好地反映了研究区多年冻土活动层水热状况。基于已验证的模型,设置多种不同气候变化情形,来分析活动层内部水热状况对全球气候变化的响应。研究结果表明:(1)土壤温度与气温呈正相关关系,气温每升高1℃活动层平均增温约0.78℃,但随着土壤深度增加,增温幅度逐渐减小;(2)升温导致活动层土壤冻结和融化过程发生变化,且对融化过程的影响明显大于冻结过程;(3)活动层各深度土壤含水量随气温升高而增大,且增大幅度随土壤深度增加而不断增大;(4)在完全融化期,降水量增加降低了浅层土壤温度,升高了深层土壤温度,而完全冻结期土壤温度均随降水量增加而升高;(5)降水量增加导致活动层含水量增加,其中完全融化期土壤含水量变化最明显。因此,气候暖湿化将对青藏高原多年冻土区活动层土壤温湿度及冻融循环过程产生较大影响,可能不利于冻土发育。
Quantifying net CO2 exchange (NEE) of arctic terrestrial ecosystems in response to changes in climatic and environmental conditions is central to understanding ecosystem functioning and assessing potential feedbacks of the carbon cycle to future climate changes. However, annual CO2 budgets for arctic tundra are rare due to the difficulties of performing measurements during non-growing seasons. It is still unclear to what extent arctic tundra ecosystems currently act as a CO2 source, sink or are in balance. This study presents year-round eddy-covariance (EC) measurements of CO2 fluxes for an arctic heath ecosystem on Disko Island, West Greenland (69 degrees N) over five years. Based on a fusion of year-round EC-derived CO2 fluxes, soil temperature and moisture, the process-oriented model (CoupModel) has been constrained to quantify an annual budget and characterize seasonal patterns of CO2 fluxes. The results show that total photosynthesis corresponds to -202 +/- 20 g C m(-2) yr(-1) with ecosystem respiration of 167 +/- 28 g C m(-2) yr(-1), resulting in NEE of -35 +/- 15 g C m(-2) y(-1). The respiration loss is mainly described as decomposition of near- surface litter. A year with an anomalously deep snowpack shows a threefold increase in the rate of ecosystem respiration compared to other years. Due to the high CO2 emissions during that winter, the annual budget results in a marked reduction in the CO2 sink. The seasonal patterns of photosynthesis and soil respiration were described using response functions of the forcing atmosphere and soil conditions. Snow depth, topography-related soil moisture, and growing season warmth are identified as important environmental characteristics which most influence seasonal rates of gas exchange.
Permafrost is vulnerable to rapid changes in climate, and increasing air temperatures have recently resulted in the increase of active layer thickness, thaw subsidence and warming of the underlying permafrost. Such changes have important implications for geotechnical properties and the stability of infrastructures in permafrost-affected areas. Many studies focus on the sensitivity of the active layer with respect to changes in climate conditions, but few assess the sensitivity of active layer thermal properties in relation to sediment types and soil water contents, and the importance of direct measurements of thermal property sensitivity with respect to soil water content compared to default physical relationships incorporated in process-based models. In this study, we use on-she data and samples to measure thermal conductivity (TC) a different gravimetric water/ice contents (GWC) in frozen and thawed permafrost. The samples, obtained from an emerged delta and an alluvial fan in the Zackenberg Valley, NE Greenland, are characterized by contrasting grain-size distribution and mineralogy. We calibrated a coupled heat and water transfer model, the CoupModel, to simulate permafrost temperatures a two sites on the delta. The sites have different snow depth characteristics and were simulated using both observed and default values of TC, and observed liquid soil water content. The results show that depth- and sediment type-specific TC values are crucial for a successful model simulation, and that transfer function derived values of TC are useful for modeling permafrost temperatures as long as site- and depth-specific grain size distribution and ice contents are defined. A thicker snow pack increased ground surface temperatures and resulted in a 1 degrees C higher annual mean ground temperature a the depth of zero annual amplitude. Permafrost temperatures increased by 1.5 degrees C and 3.5 degrees C a the depth of 18 m with 3 degrees C and 6 degrees C ground surface warming, but warming combined with increased soil water content had no important additional effect on the thermal regime when ground surface temperatures were prescribed as upper boundary conditions. Precipitation in the form of snow, however, may have a larger effect on ground temperatures directly, due to the surface temperature changes, than will the subsequent changes in thermal properties following increase in soil water content.
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global warming. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R (2)) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water exchanges between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thawing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeper and permafrost degradation.
随着全球气候变暖,青藏高原冻土活动层正在逐渐加深,为了理解积雪和表层有机质土壤对冻土活动层的影响机理,一维水热耦合模型CoupModel被用于模拟气象驱动下土壤冻融的动态过程.基于祁连山冰沟和青藏高原唐古拉站长期监测数据,CoupModel模型被成功的率定和验证.在冰沟站验证的模型被用于研究积雪对冻土活动层的影响,结果显示:目前较浅积雪情景(雪深20cm的雪深)并不利于冻土的发育,主要是雪相对于空气低的热传导隔绝了表层土壤向大气的热损失.在唐古拉站验证的模型被用于研究有机质土对冻土活动层的影响,结果显示:随着有机质土壤深度增加,模拟的活动层夏季融化深度逐渐较小.有机质土壤较矿物质土壤低的热传导和高的热容性质减少了下伏土壤热状况对太阳辐射和气温波动的响应,说明...
近年来,青藏高原多年冻土区生态环境呈现出逐年恶化趋势,从而对多年冻土活动层水热过程造成显著影响.此外,如何构建更加有效、针对寒区的陆面过程模式成为寒区研究的重点、热点之一.作为一种有效的参数估计方法,Bayes参数估计算法具有准确估计陆面过程模式参数的能力.因此,基于2005—2008年观测数据,利用CoupModel模型对青藏高原风火山流域土壤水热运移过程进行模拟;同时,利用Bayes参数估计方法估计部分水热运移参数.结果显示:模型对土壤温度(ST)的模拟效果较好,NSE系数均在0.90以上;也能够较好模拟浅层(0~40cm)土壤水分,NSE值均达到0.80以上,而对40cm以下土壤水分的模拟结果较差.模型也能够较准确模拟活动层土壤的冻结-融化过程.模型对温度水分极值和40cm深度以下水分的模拟存在一些偏差.值得一提的是,基于重要性采样MCMC方案的Bayes参数估计算法能够有效估计水热运移参数,模型模拟结果得到极大的改进.Bayes算法能够广泛解决陆面过程模式参数估计问题.
以黑河源区高山草甸冻土带的基本气象参数、植被参数和土壤水热性质参数为输入条件,利用CoupModel模型计算了试验点两个完整年度日尺度上的各种基本水热状况,计算结果较符合实测值(7层地温和土壤液态含水量平均R2分别为0.95和0.83)。利用模型输出的土壤热通量和土壤水迁移分析了试验点季节性冻土区的水热传输过程:在土壤层开始冻结期,下层土壤液态水向冻结锋面集结,集结期向上的地热通量急剧增加;在冻结期,土壤热传导主要与上下层的土壤温度有关,土壤水迁移基本处于零通量状态;在融化期,在融化锋面未出现液态水分集结现象,融化层土壤水热传输过程迅速改变并与非冻结土壤一致,向下的地热通量急剧增加。