共检索到 86

Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107353 ISSN: 0266-352X

This paper establishes a novel full-process numerical simulation framework for analyzing the 3D seismic response of mountain tunnels induced by active faults. The framework employs a two-step approach to achieve wavefield transmission through equivalent seismic load: first, a highly efficient and accurate FMIBEM (Fast multipole indirect boundary element method) is used for large-scale 3D numerical simulations at the regional scale to generate broadband ground motions (1-5 Hz) for specific sites; subsequently, using the FEM (Finite element method), a refined simulation of the plastic deformation of surrounding rock and the elastoplastic behavior of the tunnel structure was conducted at the engineering scale. The accuracy of the framework has been validated. To further demonstrate its effectiveness, the framework is applied to analyze the impact of different fault movement mechanisms on the damage to mountain tunnels based on a scenario earthquake (Mw 6.7). By introducing tunnel structure damage classification and corresponding damage indicators, the structural damage levels of tunnels subjected to active fault movements are quantitatively evaluated. The findings demonstrate that the framework successfully simulates the entire process, from fault rupture and terrain amplification to the seismic response of tunnel structures. Furthermore, the severity of tunnel damage caused by different fault types is ranked as follows: reverse fault > normal fault > strike-slip fault.

期刊论文 2025-09-01 DOI: 10.1016/j.enganabound.2025.106306 ISSN: 0955-7997

The bank protection measures of waterways shall become more environmentally friendly in the future including the use of plants instead of stones. The low levels of protection provided by plants in the early phase after planting requires a process-based understanding of soil-wave-interaction. One process that is considered essential is liquefaction where the soil undergoes a phase-change from solid-like to fluid-like behaviour which could reduce the safety of the system. The aim of this publication is to analyse the results of column experiments on wave-induced soil liquefaction and to develop a numerical model which is able to describe the entire process from the pre-liquefaction phase to the following reconsolidation in order to support the analysis of liquefaction experiments. Numerical simulations of the column experiments were done using a fully coupled hydro-mechanical model implemented in the open-source software FEniCS. A permeability model derived from granular rheology allows the simulation of dilute as well as dense suspensions and sedimented soil skeletons. The results of the simulations show a good agreement with the experimental data. Theoretical limits in the liquefied state are captured without the common modelling segmentation into pre-and post-liquefaction phase. Due to the modular structure of the implementation, the constitutive setting can be adjusted to incorporate more complex formulations in order to study the influence of wall friction and non-linearity in soil behaviour.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107321 ISSN: 0266-352X

Predicting cumulative surface slope displacements induced by rainfall infiltration is crucial for accurately assessing the risks to potentially affected infrastructure. In this paper the numerical modelling of the case history of Miscano slope is presented. Plaxis 2D code has been used adopting two constitutive laws: the linear elastoplastic model (Mohr-Coulomb, MC) and the Hardening Soil with small strain stiffness (HSsmall). The aim is to test the suitability of these constitutive laws in predicting the hydro-mechanical behaviour of clayey soil slope. Based on long-term field measurements, the parameters of MC and HSsmall have been determined by back analysing the first-year field measurements in terms of cumulative surficial horizontal displacements and pore water pressure. Subsequently, the numerical models have been validated against the analogous field measurements collected from the second year. The numerical models predict with a good agreement the field measurements for both years. In terms of cumulative surficial horizontal displacements, the HSsmall underestimates the field measurements by 21.2% at the end of the first year, while that based on MC exhibits a 32.8% overestimation. Moreover, the initialization procedure clearly affects the cumulative surficial horizontal displacements results obtained with both the HSsmall and MC models for the second year. In fact, the best results have been achieved when the second-year net rainfall have been applied starting from the initial phase used to generate the lithostatic stress state.

期刊论文 2025-08-01 DOI: 10.1016/j.compgeo.2025.107267 ISSN: 0266-352X

Geocells are three-dimensional, interconnected cellular geosynthetics widely used to enhance the overall strength of soils. Their foldable structure can cause variations in pocket shape during installation, depending on the extent of extension. Understanding the impact of these shape variations is essential for optimizing reinforcement efficiency and reducing the associated geocell application costs. The aspect ratio, defined as the ratio of the cell's transverse (welded) axis to the longitudinal (wall summit) axis, is proposed to evaluate the degree of extension of the most commonly utilized honeycomb-shaped geocell. A coupled continuum-discontinuum numerical method was employed to investigate the behavior of honeycomb-shaped geocell reinforced soils across various aspect ratios under confined compressive loading. The simulation results indicate that a geocell with an aspect ratio of 1.0 exhibits optimal reinforcement efficiency, and whereas reinforcement efficiency decreases as the aspect ratio deviates from 1.0 causing pocket geometries to flatten. The superior performance of rounded geocells is attributed to their enhanced ability to promote load-bearing in strong contact subnetworks. This results in denser packing structures, higher contact force anisotropy from a microscopic perspective, and greater confinement capacity against deformation from a macroscopic perspective.

期刊论文 2025-08-01 DOI: 10.1016/j.compgeo.2025.107256 ISSN: 0266-352X

This study evaluates dykes stability of bauxite residue storage facility using limit equilibrium (LEM) and finite element methods (FEM), considering diverse construction phases. In LEM, steady state seepage is simulated using piezometric line while factor of safety (FOS) is determined by Morgenstern-Price method using SLOPE/W. In FEM, actual loading rates and time dependent seepage is modelled by coupled stress-pore water pressure analysis in SIGMA/W and dyke stability is assessed by stress analysis in SLOPE/W, referencing SIGMA/W analysis as a baseline model. Both the analysis incorporated suction and volumetric water content functions to determine FOS. FEM predicted pore pressures are validated against in-situ piezometer data. The results highlight that coupled hydro-mechanical analysis offers accurate stability assessment by integrating stress-strain behaviour, pore pressure changes, seepage paths, and dyke displacements with time. It is found that inclusion of unsaturated parameters in Mohr-Coulomb model improved the reliability in FOS predictions.

期刊论文 2025-07-03 DOI: 10.1080/19386362.2025.2499852 ISSN: 1938-6362

Particle characteristics (particle shape and size), along with relative density, significantly influence the frictional characteristics and liquefaction behavior of granular materials, particularly sand. While many studies have examined the individual effects of particle shape, gradation, and relative density on the frictional characteristics and liquefaction behavior of sand, they have often overlooked the combined effects of these soil parameters. In this study, the individual effect of these three soil parameters on the strength characteristics (angle of internal friction) and liquefaction resistance has been quantified by analyzing the data available in the literature. A novel dimensionless parameter, the 'packing index (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}),' was developed to account for the bulk characteristics (relative density - RD) and grain properties (gradation, represented by the coefficient of uniformity (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_u$$\end{document}), and particle shape represented by the shape descriptor regularity (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document})) of the granular soils. Through statistical analysis, a power law-based equation was proposed and validated to relate the cyclic resistance ratio (CRR) and angle of internal friction (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}) with the packing index. Finally, an approach to assess the liquefaction resistance was detailed considering the intrinsic soil parameters, aiming to bridge the gap between field observations and laboratory analysis to facilitate a comprehensive understanding of soil behavior under cyclic loading.

期刊论文 2025-07-01 DOI: 10.1007/s10035-025-01529-4 ISSN: 1434-5021

The deterioration of rock mass in the Three Gorges reservoir area results from the coupled damage effects of macro-micro cracks and dry-wet cycles, and the coupled damage progression can be characterized by energy release rate. In this study, a series of dry-wet cycle uniaxial compression tests was conducted on fractured sandstone, and a method was developed for calculating macro-micro damage (DR) and energy release rates (YR) of fractured sandstone subjected to dry-wet cycles by considering energy release rate, dry-wet damage and macro-micro damage. Therewith, the damage mechanisms and complex microcrack propagation patterns of rocks were investigated. Research indicates that sandstone degradation after a limited cycle count primarily exhibits exsolution of internal fillers, progressing to grain skeleton alteration and erosion with increased cycles. Compared with conventional methods, the DR and YR methodologies exhibit heightened sensitivity to microcrack closure during compaction and abrupt energy release at the point of failure. Based on DR and YR, the failure process of fractured sandstone can be classified into six stages: stress adjustment (I), microcracks equal closure (II), nonlinear slow closure (III), low-speed extension (IV), rapid extension (V), and macroscopic main fracture emergence (VI). The abrupt change in damage energy release rate during stage V may serve as a reliable precursor for inducing failure. The stage-based classification may enhance traditional methods by tracking damage progression and accurately identifying rock failure precursors. The findings are expected to provide a scientific basis for understanding damage mechanisms and enabling early warning of reservoir-bank slope failure. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.09.055 ISSN: 1674-7755

The present document presents a review on the use of the finite element software package CODE_BRIGHT to simulate reinforced soil structures (RSS). RSS are composed of longitudinal steel or polymeric materials, placed orthogonal to the main stress direction in a soil mass, acting as tension-bearing elements. A common application of RSS is in retaining structures, in the form of reinforced soil walls (RSWs). RSW are usually designed with analytical methods, which have limited capabilities when predicting a structure's deformation response. To improve on this, the use of numerical tools allows to quantify the stress-strain response of complex, compound structures, such as RSWs. Several factors must be considered when modelling RSS, including reinforcement response, which can be non-linear under several circumstance (including time- and temperature-dependencies), soil-reinforcement interaction, soil-structure interaction, and soil response, all of which can be affected by the presence of moisture. Using laboratory measured data, the individual response of reinforcements (e.g., creep elongation), as well as the compound behaviour of soil-reinforcement material (e.g., pullout response) can be simulated to explore individual and compound response. Depending on the modelled phenomena, numerical simulations may include 2D and 3D representations. For full-scale reinforced soil walls, the stress-strain response within the soil mass, reinforcements, concrete facing panels, and connections can be studied in magnitude and distribution. Details regarding special considerations of how to model such structures with CODE_BRIGHT and other commercially available software are provided. Insights on the thermo-hydraulic repone of RSWs are covered. Advantages, limitations and future lines of research in the use of CODE_BRIGHT are explored.

期刊论文 2025-05-19 DOI: 10.3389/fbuil.2025.1553500

A critical investigation of three constitutive models for clay by means of analyses of a sophisticated laboratory testing program and of centrifuge tests on monopiles in clay subjected to (cyclic) lateral loading is presented. Constitutive models of varying complexity, namely the basic Modified Cam Clay model, the hypoplastic model with Intergranular Strain (known as Clay hypoplasticity model) and the more recently proposed anisotropic visco-ISA model, are considered. From the simulations of the centrifuge tests with monotonic loading it is concluded that all three constitutive models give satisfactory results if a proper calibration of constitutive model parameters and proper initialisation of state variables is ensured. In the case of cyclic loading, the AVISA model is found to perform superior to the hypoplastic model with Intergranular Strain.

期刊论文 2025-05-16 DOI: 10.1680/jgeot.23.00268 ISSN: 0016-8505
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 末页
  • 跳转
当前展示1-10条  共86条,9页