Mechanical response of soils under simple shear conditions has long been a subject of significant interest in the field of geomechanics. When subjected to simple shear loading, soils experience rotations of the principal stress directions. To provide a unified description for the simple shear behavior of clay and sand, this paper proposes a novel critical state model that accounts for the influence of principal stress rotation (PSR), based on the unified critical state model for overconsolidated clay and sand with subloading surface (CASM-S). The novelty of the newly proposed model, which is named as CASM-SP, lies in its ability to consider the influence of direction of the stress increment when establishing the plastic flow rule that is suitable for both clay and sand. Therefore, the model can capture the mechanical response of soils resulting from the PSR loading mechanism, such as noncoaxial behaviors. Then, the newly proposed model is validated through the comparisons with a series of experimental data of clay and sand under both drained and undrained simple shear conditions. Results predicted by the CASM-SP model agree well with those from the experiments, demonstrating that CASM-SP can reasonably describe the simple shear behavior of both clay and sand.
In order to optimize the efficiency and safety of gas hydrate extraction, it is essential to develop a credible constitutive model for sands containing hydrates. A model incorporating both cementation and damage was constructed to describe the behavior of hydrate-bearing cemented sand. This model is based on the critical state theory and builds upon previous studies. The damage factor Ds is incorporated to consider soil degradation and the reduction in hydrate cementation, as described by plastic shear strain. A computer program was developed to simulate the mechanisms of cementation and damage evolution, as well as the stress-strain curves of hydrate-bearing cemented sand. The results indicate that the model replicates the mechanical behavior of soil cementation and soil deterioration caused by impairment well. By comparing the theoretical curves with the experimental data, the compliance of the model was calculated to be more than 90 percent. The new state-dependent elasto-plastic constitutive model based on cementation and damage of hydrate-bearing cemented sand could provide vital guidance for the construction of deep-buried tunnels, extraction of hydrocarbon compounds, and development of resources.
In order to predict the mechanical responses of Haikou red clay under over-consolidation and cyclic loading conditions, this paper adopts a unified critical state model considering the over-consolidation and cyclic behaviour (i.e. CASM-kII) for the constitutive modelling. Although the CASM-kII can reasonably characterize the isotropic and hardening behaviours of soils, the dilatancy law of original CASM-kII is modified in this paper to achieve a better agreement with stress-dilatancy relation observed in laboratory test. Through the comparisons of a series of experiment data and simulated results, it is found that the modified CASM-kII can accurately characterize the over-consolidate and cyclic responses of Haikou red clay under different loading conditions.