The study aimed to understand the optical properties of Black Carbon (BC) and radiative forcing over a data deficient Himalayan region focusing on critical zone observatory employing ground-based measurements by Aethalometer for BC and satellite retrieval techniques for optical properties during mid-May-June 2022 and January-May 2023. BC mass concentration ranged from 0.18 to 4.43 mu gm- 3, exhibit a mean of 1.47 +/- 0.83 mu gm- 3 with higher summer concentration (1.51 +/- 0.94 mu gm- 3) than winter (1.39 +/- 0.61 mu gm- 3). The average Absorption & Aring;ngstrom Exponent observed to be significantly higher than unity (1.77 +/- 0.31) over the studied high-altitude Himalayan region, suggesting the dominance of biomass-burning aerosol. Higher aethalometer derived compensation parameter (K) in winter suggesting locally originated BC while, lower K value in summer suggesting aged BC transported from Indo-Gangetic Plains. Optical properties calculated from Optical Properties of Aerosol and Cloud (OPAC) model are used in the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model to calculate the aerosol Direct Radiative Force (DRF). The entire studied period is characterized by the predominance of absorbing aerosols, particularly BC, increasing Aerosol Optical Depth, Asymmetric Parameters and decreasing Single Scattering Albedo, leading to a considerable increase in atmospheric radiative forcing (+0.9 Wm-2, top of atmosphere) and Heating Rate (0.36 KDay- 1). The mean radiative forcing within atmosphere during summer was higher (+14.29 Wm-2) relative to the winter (+12.00 Wm-2), emphasizing the impact of absorbing aerosols on regional warming and potential glacier melting in the Himalayas at a faster rate. Urgent policy consideration for the reduction of absorbing aerosols is highlighted, recognizing the critical roles of Black Carbon in the changing behaviour of Critical Zone observatory. The study's data serve as a valuable resource to understanding and addressing uncertainties in climate models, aiding effective policy implementation for Black Carbon reduction.
Anthropogenic climate change threatens water storage and supply in the periglacial critical zone. Rock glaciers are widely distributed alpine aquifers with slower response to temperature increases, that provide the summer water flow of many alpine streams. Knowing the extent and makeup of rock glaciers is necessary to evaluate their potential for water supply. We used non-invasive methods, integrating geological, geomorphological, meteoro-logical, and geophysical information to characterize the internal structure and hydrology of the Upper Camp Bird rock glacier (UCBRG) located on level 3 of Camp Bird Mine in Ouray, Colorado, and assessed the applicability of two electromagnetic induction systems in this highly heterogeneous landform with a history of anthropogenic activity. The time-domain (G-TEMTM) system achieved deep subsurface penetration (similar to 100 m) and realistic modeling of the internal structure of the UCBRG: a shell of volcanic rock fragments (< 3 m thick; 1-100 Ohm-m), a meltwater component (10(2)-10(3) Ohm-m), located between 50 and 100 m near the toe (subpermafrost flow), and 1-30 m in the soundings farthest from the toe (suprapermafrost flow within the active layer), and a frozen component (permafrost 50-80 m thick; 10(3)-10(6) Ohm-m). The frequency-domain system, however, was highly susceptible to local environmental conditions, including anthropogenic objects (i.e., mine carts, lamp posts, tunnel tracks, etc.) and was unable to resolve UCBRG's internal makeup. The non-invasive methodology and general conceptual framework presented here can be used to characterize other alpine aquifers, contributing to the quantification of global water resources, and highlighting the importance of preserving rock glaciers as storage for critical water supply in the future.
Soil supports life by serving as a living, breathing fabric that connects the atmosphere to the Earth's crust. The study of soil science and pedology, or the study of soil in the natural environment, spans scales, disciplines, and societies worldwide. Soil science continues to grow and evolve as a field given advancements in analytical tools, capabilities, and a growing emphasis on integrating research across disciplines. A pressing need exists to more strongly incorporate the study of soil, and soil scientists, into research networks, initiatives, and collaborations. This review presents three research areas focused on questions of central interest to scientists, students, and government agencies alike: 1) How do the properties of soil influence the selection of habitat and survival by organisms, especially threatened and endangered species struggling in the face of climate change and habitat loss during the Anthropocene? 2) How do we disentangle the heterogeneity of abiotic and biotic processes that transform minerals and release life-supporting nutrients to soil, especially at the nano-to microscale where mineral-water-microbe interactions occur? and 3) How can soil science advance the search for life and habitable environments on Mars and beyond-from distinguishing biosignatures to better utilizing terrestrial analogs on Earth for planetary exploration? This review also highlights the tools, resources, and expertise that soil scientists bring to interdisciplinary teams focused on questions centered belowground, whether the research areas involve conservation organizations, industry, the classroom, or government agencies working to resolve global chal-lenges and sustain a future for all.
Subalpine mixed-conifer ecosystems are dependent on snowfall, which is expected to decrease under projected climate change. Changes in snowpack are likely to have important consequences for water and carbon cycling in these and downstream ecosystems. Particularly within semi-arid environments, snowpack changes will directly influence localized water and carbon dynamics and indirectly influence regional-scale levels of water availability and carbon sequestration. In this study, we monitor soil evaporation (E) and soil respiration (R) and evaluate how snow cover affects these effluxes within a mixed-conifer ecosystem within the Santa Catalina Mountains about 10km north of Tucson, Arizona. Using time-lapse digital photos, we identified areas of consistent short and long snow duration, and we monitored E and R in these areas every 2weeks for 15months. Our primary findings include the following: (1) Dynamics of E are not different between long and short snow season sites, (2) E for both short and long snow seasons has a strong relationship with soil moisture and a poor relationship with soil temperature, (3) dynamics of R vary between long and short snow season sites throughout the year, with short snow season fluxes typically higher than those of long snow season sites, and (4) R for short and long snow seasons has a strong relationship with soil temperature and a poor relationship with soil moisture. Because climate change will only exacerbate both drying-wetting and cooling-warming cycles, detangling these complex relationships becomes increasingly important for understanding shifts in carbon dynamics in these subalpine mixed-conifer ecosystems. Copyright (c) 2013 John Wiley & Sons, Ltd.