Since 2002, ash dieback caused by the invasive fungus Hymenoscyphus fraxineus has been observed in Germany. The pathogen and its associated symptoms have fatal consequences for the vitality and survival of European ash (Fraxinus excelsior L.), an economically and ecologically important tree species. This study analyses the ash monitoring results of eleven intensive monitoring plots of the FraxForFuture research network distributed across Germany and focuses on within-stand differences of symptoms in dependence of small-scale site and tree properties. A cohort of 1365 ash trees was surveyed six times over three years, testing and applying a summer and a winter version of a nationally standardised ash dieback assessment key. The main disease symptoms (crown dieback and basal lesions) were more pronounced in areas with higher ash density, in edaphically moist areas (hydromorphic soils), on younger/smaller ash trees, and generally increased over time. However, the trend over time differed between single plots. In case of considering only the surviving part of the ash populations, crown condition even improved in 6/11 plots, indicating a selection process. Large basal lesions at the beginning of the observation period were a very good predictor for deadfall probability, especially on trees with lower stem diameter. Generally, ash dieback related symptoms at stem and crown were highly correlated. Silvicultural management practice in the past that actively pushed ash towards the moister end of its water demand spectrum has to be questioned in the light of ash dieback. Cost-intensive ash re-cultivation in the future-possibly with less dieback-susceptible progenies-should avoid pure ash stands and hydromorphic soil conditions.
The record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed. While some trees were severely impacted by the prolonged water deficits and high temperatures, others remained vital with no or only minor signs of crown vitality loss. Why some beech trees were more susceptible to drought-induced crown damage than others and whether growth recovery is possible are poorly understood. Here, we aimed to identify growth characteristics associated with the variability in drought response between individual beech trees based on a sample of 470 trees in northern Switzerland. By combining tree growth measurements and crown condition assessments, we also investigated the possible link between crown dieback and growth recovery after drought. Beech trees with early browning exhibited an overall lower growth vigor before the 2018 drought than co-occurring vital beech trees. This lower vigor is mainly indicated by lower overall growth rates, stronger growth declines in the past decades, and higher growth-climate sensitivity. Particularly, warm previous year summer conditions negatively affected current growth of the early-browning trees. These findings suggest that the affected trees had less access to critical resources and were physiologically limited in their growth predisposing them to early browning. Following the 2018 drought, observed growth recovery potential corresponded to the amount of crown dieback and the local climatic water balance. Overall, our findings emphasize that beech-dominated forests in Central Europe are under increasing pressure from severe droughts, ultimately reducing the competitive ability of this species, especially on lowland sites with shallow soils and low water holding capacity.