Setting an expandable polystyrene (EPS) board on box culverts can reduce the vertical earth pressure (VEP) acting on the culvert roof. However, long-term backfill load will induce creep in both the EPS board and the surrounding soil, resulting in a change in the stress state of the culvert-soil system. A mechanical model for the long-term interaction of backfill-EPS board-box culvert was established, and theoretical formulas were derived for calculating the earth pressure around the culvert. Numerical simulation was employed to validate the accuracy of the proposed theoretical approach. Research indicates that, with EPS board, the VEP decreases rapidly then slightly increases with time and eventually approaches an asymptotic value, ultimately decreasing by 33%. However, the horizontal earth pressure (HEP) shows the opposite pattern and ultimately increases by 15%. The foundation contact pressure (FCP) increases nonlinearly and reaches a stable value, ultimately increasing by 10.2%. Without the EPS board, the VEP and HEP are significantly different from those with the EPS board. Although EPS boards can reduce the VEP on the culvert, attention should be paid to the variation of HEP caused by the creep of the EPS board and backfill.
Understanding the thermal regime of road embankments in cold climates during winter is essential for efficient road design and accurate estimation of maintenance frequencies to reduce freeze-induced damage. In response to the challenging climate conditions in northern Sweden, an experimental field setup was designed to assess the thermal impact of culverts and accumulated snow in ditches on the thermal regime of road embankments during a winter season. This study provides detailed information on the experimental setup, highlights potential challenges from installation phase to data acquisition, and addresses measurement errors. Methods to ensure accuracy and obtain reliable data are also presented. Additionally, some of the obtained measurement results are included in this paper. The results show that snow impacts the thermal regime of the embankment from the onset of accumulation in the ditch, when the snow cover is still thin, until it reaches a depth of 65 cm. Beyond this depth, the soil beneath the snow remains almost unfrozen throughout the winter season. Additionally, the temperature distribution measurements within the embankment indicate that freezing progresses faster near the culvert compared to the rest of the embankment. However, once the culvert ends are insulated by snow cover, the frost depth in the soil near the culvert does not increase significantly, while the rest of the road continues to freeze gradually to greater depths throughout the winter season. The measurement results presented in this study provide researchers with a reliable dataset for validating numerical models in related research areas simulating cold-climate conditions. Additionally, these results enhance the understanding of the thermal regime of road embankments in typical cold climates and offer valuable insights for planning road maintenance and construction in such regions. Furthermore, this study provides essential information for researchers aiming to design and optimize experimental measurement setups in similar investigations.
In recent decades, buried flexible corrugated metal culverts (CMCs) and corrugated metal pipes (CMPs) have increasingly contributed to the development of infrastructure networks. The primary design aspect of these structures is the soil-structure interaction under different modes of loading. Surface static loading caused by traffic flow frequently leads to the development of deformations and internal forces in buried structures. Thus, the investigation of the soil-structure interaction mechanism under surface static loading can yield a deeper understanding of the culvert response, to enhance current design approaches. Furthermore, to assure their continued serviceability over time, the regular inspection of in-service culverts is vital to assess their status in terms of potential damage and material deterioration due to aging factors such as corrosion and/or mechanical abrasion. In this study, laboratory tests were used to monitor the performance of buried flexible open-bottom arch corrugated metal culverts under surface static loading. Following the backfilling of soil surrounding each culvert, surface static loading was initiated via a top loading steel plate. Impacts of the soil cover depth and culvert condition (i.e., intact or deteriorated) were investigated via three test configurations: an intact culvert with a cover depth of 600 mm (C-01), an intact culvert with a cover depth of 300 mm (C-02), and a deteriorated culvert with a cover depth of 300 mm (C-03). During each static loading test, the load-settlement curve of the top loading steel plate, the increase in vertical soil stresses, and culvert deformations and internal forces were recorded. Furthermore, 3D finite element models of the three test configurations were developed by simulating the culvert responses to surface static loading, and the numerical modelling results were then validated against the laboratory measurements. In addition, to investigate the impact of culvert deterioration on the performance of the soil-culvert interaction, numerical models were used to simulate different damage scenarios.
Laying geogrids and compressible materials, such as expandable polystyrene (EPS), on the tops of culverts under high fill can improve the stability of the fill and reduce the earth pressure on the tops of culverts. The creep of geogrids and compressible materials under high fill affects the stress state of culvert - soil systems. However, the long-term behaviour of culverts with geogrids and EPS is not clear. This paper investigates the long-term behaviour of culvert - soil interactions under high fill, specifically focusing on the creep effects of geogrids and EPS boards. A novel mechanical model for determining the long-term stress characteristics of culverts is proposed based on limit equilibrium theory. A comparison with finite difference simulation results was conducted to validate the proposed model. The findings reveal that the vertical earth pressure on the culvert top gradually transfers to the culvert side, exhibiting a nonlinear decrease over time. Moreover, the horizontal earth pressure on the culvert sidewall exhibits nonlinear growth with time, decreasing incrementally with depth. The maximum horizontal earth pressure on the culvert sidewall increases by 12.5% postconstruction, emphasizing the importance of accounting for the creep effects of geogrids and EPS boards in engineering design to prevent structural issues.
Rehabilitation of corroded buried galvanized steel structures, including corrugated metal culverts (CMCs) and pipes (CMPs), requires a deep understanding of the corrosion process and the corresponding deterioration. The current paper describes an accelerated laboratory corrosion test of corrugated galvanized steel coupons exposed to sequenced wetting/drying cycles ranging from 50 and up to 1600 cycles. The analysis demonstrates the influence of applying an increased number of wetting/drying cycles on the acceleration of the developed corrosion in the buried galvanized steel coupons. The study examines changes in the steel geometry represented by thickness loss and the accompanied deterioration of the mechanical properties such as tensile strength, hardness, and ductility over relatively short periods of time. It was observed that corrosion was insignificant as long as the zinc coating of the galvanized steel lasted. However, when the zinc was almost fully depleted, the bare steel was directly subjected to the surrounding corrosive environment, causing greater corrosion damage during subsequent wetting/drying cycles. Based on four standard mathematical models, the paper also presents approximate average corrosion predictions for bare steel in the galvanized coupons, to assess the impact of potential damage due to corrosion and determine essential rehabilitation measures.
Three-sided underpass culverts are structural systems used to provide passing vehicle or pedestrian. It is of great importance that such infrastructure systems remain useable, especially after disasters such as earthquakes that can cause great destruction, in order to ensure that infrastructure services can be maintained continuously. In this context, the aim of this study is to investigate using finite element method (FEM) the dynamic responses of three-sided underpass culvert system under near-fault ground motions with velocity pulse and far-fault ground motions. For this aim, the modal analysis of the soil-underpass culvert interaction system has been realized using proposed soil-structure interaction (SSI) model. The frequencies of the interaction system obtained from the finite element model developed using proposed approaches have been verified comparing with the results obtained from the literature and the site periods. After showing that the modes of the interaction system can be obtained with the help of the proposed numerical model, the full transient dynamic analyses have been performed in the time history using five near-fault and far-fault records, considering four different soil systems. The comparisons shows that the variations of the soil systems and the ground motion type can significantly affect the top peak relative displacements and the dynamic stresses of the three-sided underpass culvert.
With the widespread application of large- quasi-rectangular pipe-jacking tunnels in urban road traffic engineering in China, higher requirements have been put forward to control the influence of their construction on the surrounding environment. To scientifically evaluate the stability of large- quasi-rectangular pipe-jacking tunnels under-passing existing box culverts, we proposed a novel viscoelastic-plastic model coupling Biot consolidation with non-stationary parameter shear creep (NPSCBCVPM) to fully characterize the coupling effect of consolidation and rheology of saturated soft soil. NPSCCBVPM was developed in Fortran as an ABAQUS user material subroutine. In addition, the NPSCBCVPM was compared with the creep tests of undisturbed soft soil and the generalized Nishihara creep model (GNCM). Finally, the proposed model was applied to the large- quasi-rectangular pipe-jacking tunnel under-passing existing box culverts of Songhu Road in Shanghai. The results show that NPSCBCVPM are in good agreement with the creep tests of soft soil, and NPSCBCVPM can better reflect the nonlinear rheological characteristics of soft soil than GNCM. Furthermore, the proposed model can scientifically evaluate the viscoelastic-plastic stability analysis of large- quasi-rectangular pipe-jacking tunnel under-passing box culvert. Further research should focus on developing three-dimensional NPSCBCVPM to better evaluate the spatial response of the box culvert structure and surrounding soil to the entire construction process of large- quasi-rectangular pipe-jacking tunnels.