Background:A shallow active layer of soil above the permafrost thaws during the summer months which promotes microbial growth and releases previously confined pathogens which result in bacterial epidemics in circumpolar regions. Furthermore, these permafrost sources harbor several antibiotic resistance genes (ARGs) which may disseminate and pose a challenge for pharmacologists worldwide.Aims:The authors examined the potential association between climate change-induced permafrost thawing, and the resulting release of antibiotic-resistant pathogens, as well as the potential impact this can have on global healthcare systems in the long run.Methodology:A cursory abstract screening was done to rule out any articles that did not have to do with viral pathogens caused by melting permafrost. Articles that were not available in English or that our institutions library did not have full-text access were weeded out by a secondary screen.Results:A comprehensive analysis of 13 relevant studies successfully revealed a wide variety of bacterial genera, including Staphylococcus spp., Pseudomonas spp., Acinetobacter spp., and Achromobacter spp., along with a total of 1043 antibiotic resistance genes (ARGs), with most pertaining to aminoglycosides and beta-lactams, offering resistance via diverse mechanisms such as efflux pumps and enzymatic modifications, within the permafrost isolates. Additionally, mobile genetic elements (MGEs) housing antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), including plasmids and transposons, were also discovered.Conclusion:Permafrost thawing is an underrated healthcare challenge warranting the need for further articles to highlight it alongside concerted efforts for effective mitigation.
1. Phosphorous (P) is essential for mediating plant and microbial growth and thus could impact carbon (C) cycle in permafrost ecosystem. However, little is known about soil P availability and its biological acquisition strategies in permafrost environment. 2. Based on a large-scale survey along a similar to 1000 km transect, combining with shotgun metagenomics, we provided the first attempt to explore soil microbial P acquisition strategies across the Tibetan alpine permafrost region. 3. Our results showed the widespread existence of microbial functional genes associated with inorganic P solubilization, organic P mineralization and transportation, reflecting divergent microbial P acquisition strategies in permafrost regions. Moreover, the higher gene abundance related to solubilization and mineralization as well as an increased ration of metagenomic assembled genomes (MAGs) carrying these genes were detected in the active layer, while the greater abundance of low-affinity transporter gene (pit) and proportions of MAGs harbouring pit gene were observed in permafrost deposits, illustrating a stronger potential for P activation in active layer but an enhanced P transportation potential in permafrost deposits. 4. Our results highlight multiple P-related acquisition strategies and their differences among various soil layers should be considered simultaneously to improve model prediction for the responses of biogeochemical cycles in permafrost ecosystems to climate change.
Coronavirus disease (COVID-19) has disrupted health, economy, and society globally. Thus, many countries, including China, have adopted lockdowns to prevent the epidemic, which has limited human activities while affecting air quality. These affects have received attention from academics, but very few studies have focused on western China, with a lack of comparative studies across lockdown periods. Accordingly, this study examines the effects of lockdowns on air quality and pollution, using the hourly and daily air monitoring data collected from Lanzhou, a large city in Northwest China. The results indicate an overall improvement in air quality during the three lockdowns compared to the average air quality in the recent years, as well as reduced PM2.5, PM10, SO2, NO2, and CO concentrations with different rates and increased O3 concentration. During lockdowns, Lanzhou's morning peak of air pollution was alleviated, while the spatial characteristics remained unchanged. Further, ordered multi-classification logistic regression models to explore the mechanisms by which socioeconomic backgrounds and epidemic circumstances influence air quality revealed that the increment in population density significantly aggravated air pollution, while the presence of new cases in Lanzhou, and medium- and high-risk areas in the given district or county both increase the likelihood of air quality improvement in different degrees. These findings contribute to the understanding of the impact of lockdown on air quality, and propose policy suggestions to control air pollution and achieve green development in the post-epidemic era.
Anthropogenic climate change threatens water storage and supply in the periglacial critical zone. Rock glaciers are widely distributed alpine aquifers with slower response to temperature increases, that provide the summer water flow of many alpine streams. Knowing the extent and makeup of rock glaciers is necessary to evaluate their potential for water supply. We used non-invasive methods, integrating geological, geomorphological, meteoro-logical, and geophysical information to characterize the internal structure and hydrology of the Upper Camp Bird rock glacier (UCBRG) located on level 3 of Camp Bird Mine in Ouray, Colorado, and assessed the applicability of two electromagnetic induction systems in this highly heterogeneous landform with a history of anthropogenic activity. The time-domain (G-TEMTM) system achieved deep subsurface penetration (similar to 100 m) and realistic modeling of the internal structure of the UCBRG: a shell of volcanic rock fragments (< 3 m thick; 1-100 Ohm-m), a meltwater component (10(2)-10(3) Ohm-m), located between 50 and 100 m near the toe (subpermafrost flow), and 1-30 m in the soundings farthest from the toe (suprapermafrost flow within the active layer), and a frozen component (permafrost 50-80 m thick; 10(3)-10(6) Ohm-m). The frequency-domain system, however, was highly susceptible to local environmental conditions, including anthropogenic objects (i.e., mine carts, lamp posts, tunnel tracks, etc.) and was unable to resolve UCBRG's internal makeup. The non-invasive methodology and general conceptual framework presented here can be used to characterize other alpine aquifers, contributing to the quantification of global water resources, and highlighting the importance of preserving rock glaciers as storage for critical water supply in the future.
Study region: The northern region of the Karakoram Range. Study focus: Karakoram is a region in High Mountain Asia with many surge-type glaciers. This study employed over 200 high-temporal-resolution remote sensing images and investigated the variations in elevation and velocity of the Ghujerab River Head Glacier (GRHG) from 2019 to 2023. Furthermore, we elucidated the potential controlling mechanisms. New hydrological insights for the region: Our findings revealed that the GRHG, akin to typical surgetype glaciers in Karakoram, started to surge in the spring and finished surging in the summer, with a duration of less than two years. Throughout the surging process, the glacier transferred a mass of 0.11 +/- 0.003 km3 from the reservoir area to the receiving area, resulting in a thickening of 91.59 +/- 1.04 m at the glacier terminus and thinning of 11.78 +/- 1.04 m in the upper glacier. By analysing the mass balance and glacier surface albedo during surging, we proposed that climatic disturbances in the glacier region provided essential material inputs for the surge. Additionally, based on the seasonal evolution pattern of glacier flow velocity, we inferred a close correlation between surging and variations in subglacial hydrology. The duration of acceleration and deceleration during glacier surging, as well as a comparison with existing studies, further support our conclusion. Future research integrating multi-source remote sensing and onsite observations can support numerical simulations to quantitatively reveal the key processes occurring beneath and within glaciers during surge events.
Assessing biodiversity in arctic-alpine ecosystems is a costly task. We test in the current study whether we can map the spatial patterns of spider alpha and beta diversity using remotely-sensed surface reflectance and topography in a heterogeneous alpine environment in Central Norway. This proof-of-concept study may provide a tool for an assessment of arthropod communities in remote study areas. Data on arthropod species distribution and richness were collected through pitfall trapping and subjected to a detrended correspondence analysis (DCA) to extract the main species composition gradients. The DCA axis scores as indicators of species composition as well as trap species richness were regressed against a combined data set of surface reflectance as measured by the Sentinel-2 satellite and topographical parameters extracted from a digital elevation model. The models were subsequently applied to the spatial data set to achieve a pixel-wise prediction of both species richness and position in the DCA space. The spatial variation in the modelled DCA scores was used to draw conclusions regarding spider beta-diversity. The species composition was described with two DCA axes that were characterized by post hoc-defined indicator species, which showed a typical annidation in the arctic-alpine environment under study. The fits of the regression models for the DCA axes and species richness ranged from R-2 = 0.25 up to R-2 = 0.62. The resulting maps show strong gradients in alpha and beta diversity across the study area. Our results indicate that the diversity patterns of spiders can at least partially be explained by means of remotely sensed data. Our approach would likely benefit from the additional use of high resolution aerial photography and LiDAR data and may help to improve conservation strategies in arctic-alpine ecosystems.
Heterogeneous terrain in montane systems results in a decoupling of climatic gradients. Population dynamics across species' ranges in these heterogeneous landscapes are shaped by relationships between demographic rates and these interwoven climate gradients. Linking demography and climate variables across species' ranges refines our understanding of the underlying mechanisms of species' current and future ranges. We explored the importance of multiple microclimatic gradients in shaping individual demographic rates and population growth rates in 16 populations across the elevational distribution of an alpine plant (Ivesia lycopodioides var. scandularis). Using integral projection modeling, we ask how each rate varies across three microclimate gradients: accumulated degree-days, growing-season soil moisture, and days of snow cover. Range-wide variation in demographic rates was best explained by the combined influence of multiple microclimatic variables. Different pairs of demographic rates exhibited both similar and inverse responses to the same microclimatic gradient, and the microclimatic effects often varied with plant size. These responses resulted in range-wide projected population persistence, with no declining populations at either elevational range edge or at the extremes of the microclimate gradients. The complex relationships between topography, microclimate and demography suggest that populations across a species' range may have unique demographic pathways to stable population dynamics.
The transportation system is one of the main sectors with significant climate impact. In the U.S. it is the second main emitter of carbon dioxide. Its impact in terms of emission of carbon dioxide is well recognized. But a number of aerosol species have a non-negligible impact. The radiative forcing due to these species needs to be quantified. A radiative transfer code is used. Remote sensing data is retrieved to characterize different regions. The radiative forcing efficiency for black carbon are 396 200 W/m(2)/AOD for the ground mode and 531 +/- 190 W/m(2)/AOD for the air transportation, under clear sky conditions. The radiative forcing due to contrail is 0.14 +/- 0.06 W/m(2) per percent coverage. Based on the forcing from the different species emitted by each mode of transportation, policies may be envisioned. These policies may affect demand and emissions of different modes of transportation. Demand and fleet models are used to quantify these interdependencies. Depending on the fuel price of each mode, mode shifts and overall demand reduction occur, and more fuel efficient vehicles are introduced in the fleet at a faster rate. With the introduction of more fuel efficient vehicles, the effect of fuel price on demand is attenuated. An increase in fuel price of 50 cents per gallon, scaled based on the radiative forcing of each mode, results in up to 5% reduction in emissions and 6% reduction in radiative forcing. With technologies, significant reduction in climate impact may be achieved. (C) 2015 Elsevier Ltd. All rights reserved.
Hydrological processes in high altitude mountainous regions differ from those in more temperate regions, primarily due to such influences as cold temperatures, large and rapid change in surface energy balance during snowmelt, a long period at low-temperature environmental condition and the existence of permafrost. A physically based, semi-distributed water balance model to quantitatively simulate the hydrological processes and stream flow, as well as to estimate the potential consequences of projected global warming on stream Row for such high altitude mountainous regions was constructed. Distributed meteorological data from the interpolation of the point measurements by means of a digital elevation model (DEM) of the basin, such as air temperature, precipitation, snowfall ratio, wind speed, etc., have been used as model input. Several other hydrological parameters, such as soil moisture content and evapotranspiration, which are essential in simulation of river runoff in a water balance state, were estimated by the combination of Landsat TM and a DEM with the utilization of the distributed meteorological data. The model uses only a few crucial parameters for calibration, and the model structure is based upon estimating the stream flow components. Simulated results of spatially distributed soil moisture content, evapotranspiration and monthly discharge yield reasonable agreement, both spatially and temporally, to the field observations or the estimated results by the other approaches. This physically based model has the potential to project stream flow under the possible climate scenarios. Copyright (C) 2000 John Wiley & Sons, Ltd.