共检索到 49

To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2496332 ISSN: 1029-8436

Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.

期刊论文 2025-09-01 DOI: http://dx.doi.org/10.3390/rs12244121

Soil freeze-thaw state influences multiple terrestrial ecosystem processes, such as soil hydrology and carbon cycling. However, knowledge of historical long-term changes in the timing, duration, and temperature of freeze-thaw processes remains insufficient, and studies exploring the combined or individual contributions of climatic factors-such as air temperature, precipitation, snow depth, and wind speed-are rare, particularly in current thermokarst landscapes induced by abrupt permafrost thawing. Based on ERA5-Land reanalysis, MODIS observations, and integrated thermokarst landform maps, we found that: 1) Hourly soil temperature from the reanalysis effectively captured the temporal variations of in-situ observations, with Pearson' r of 0.66-0.91. 2) Despite an insignificant decrease in daily freeze-thaw cycles in 1981-2022, other indicators in the Qinghai-Tibet Plateau (QTP) changed significantly, including delayed freezing onset (0.113 d yr- 1), advanced thawing onset (-0.22 d yr- 1), reduced frozen days (-0.365 d yr- 1), increased frozen temperature (0.014 degrees C yr- 1), and decreased daily freeze-thaw temperature range (-0.015 degrees C yr- 1). 3) Total contributions indicated air temperature was the dominant climatic driver of these changes, while indicators characterizing daily freeze-thaw cycles were influenced mainly by the combined effects of increased precipitation and air temperature, with remarkable spatial heterogeneity. 4) When regionally averaged, completely thawed days increased faster in the thermokarstaffected areas than in their primarily distributed grasslands-alpine steppe (47.69%) and alpine meadow (22.64%)-likely because of their stronger warming effect of precipitation. Locally, paired comparison within 3 x 3 pixel windows from MODIS data revealed consistent results, which were pronounced when the thermokarst-affected area exceeded about 38% per 1 km2. Conclusively, the warming and wetting climate has significantly altered soil freeze-thaw processes on the QTP, with the frozen soil environment in thermokarstaffected areas, dominated by thermokarst lakes, undergoing more rapid degradation. These insights are crucial for predicting freeze-thaw dynamics and assessing their ecological impacts on alpine grasslands.

期刊论文 2025-06-30 DOI: 10.1016/j.catena.2025.108936 ISSN: 0341-8162

Alpine vegetation, cold deserts, and glacial landscapes significantly impact runoff generation and convergence in cold and alpine regions. The presence of existing mountain permafrost complicates these impacts further. To better understand the specific regulation of runoff by alpine landscapes, we analyzed the spatiotemporal capacity for runoff generation and the contributions of water from different landscape types within a typical alpine permafrost watershed: the upper reaches of the Shule River (USR) basin in the Qinghai-Tibet Plateau. The analysis was informed by both field observations and simulations using the VIC model, which incorporated a new glacier module. We identified that glaciers, alpine meadows, cold deserts, and barren landscape zones as the four major runoff generation regions, collectively accounting for approximately 95 % of the USR runoff. The runoff depth in each landscape zone was calculated to express its runoff generation capacity, with an order of: glacier > cold desert > barren > alpine grassland > alpine meadow > shrub > swamp meadow. The alpine regions above 4000 m in altitude are the primary runoff generation areas, and the runoff generation capacity gradually decreases from high to low altitudes in the alpine basin. Due to seasonal variations in rainfall distribution, glacier melting, and permafrost thawing-freezing, the dominant landscape types contributing to runoff varied monthly. The simulated results indicate that permafrost plays an important role in runoff generation. Although permafrost degradation had a slight impact on the annual total runoff generated from each landscape zone (not taking into account of ground ice), seasonal runoff generated in each landscape exhibited significant changes in response to permafrost thawing. After permafrost completely thawed in each landscape zone, generated flood flow decreased, while low flow conversely increased, implying an enhanced water retention capacity of alpine landscapes following permafrost degradation. Additionally, the responses of runoff to permafrost changes varied across different alpine landscapes. These findings enhance our understanding of the mechanisms underlying runoff generation and convergence in cold and alpine watersheds of the Northern Hemisphere.

期刊论文 2025-02-01 DOI: 10.1016/j.catena.2024.108643 ISSN: 0341-8162

Gully erosion on agricultural land severely damages land resources and affects agricultural production. Topographic features, tillage methods, and roads are major elements constituting the farmland landscape, but the effect of their distribution in the farmland on the gully erosion is still unclear. This study examined the long-term impacts of changes in the farmland environment and climate change on gully erosion over a long temporal scale of nearly 60 years, the results showed that farmland reclamation over the past 60 years had led to a 2324.2 % increase in gully length density and a 3563.3 % increase in gully area density. The increase in annual rainfall amount and the frequency of extreme rainstorms had led to a rapid increase of gully erosion intensity in the last decade, with an average development rate in length density and area density of 61.5 m km- 2 and 778.7 m2 km- 2, respectively. Farmlands with slope aspects between 135 and 270 degrees were more prone to gully erosion, which was related to the redistribution of snow on hillslopes caused by prevailing wind directions. Tillage methods and roads simultaneously affect gully erosion, with newly formed gullies located in farmlands and roadsides accounting for 63.0 % and 29.8 %. Gullies in regions where the angle between furrows and unpaved roads exceeded 70 degrees accounted for 61.1 % of the total roadside gullies. Over the last decade, the annual average increase of gully length and area was 9.8 m yr-1 and 246.1 m2 yr-1. The development rate of gully area was significantly correlated with the drainage area.

期刊论文 2025-02-01 DOI: 10.1016/j.catena.2024.108623 ISSN: 0341-8162

The rupture of Fund & atilde;o Dam spilled contaminated tailings across the Doce river basin, severely damaging municipalities such as the urban Barra Longa and the rural Gesteira. The wave of tailings led to the sediment deposition in rivers margins, causing the loss of riparian forests and cropping areas. Sediment analyses confirmed the presence of toxic compounds (sodium and ether amine) and a very low fertility. In consequence, there was a sharp decline in agro-pastoral production in Gesteira, leading to land abandonment and rural exodus. In the urban area of Barra Longa, the wave of tailings damaged the urban floodplain and the square, which were rehabilitated using grey infrastructure. Alternatively, we proposed a new landscape recovery plan for both Barra Longa and Gesteira based on Nature and Community-based solutions that contemplate the inclusion of green infrastructure, the remediation of toxic compounds, the restoration of soil fertility, permeability and stabilization, riparian forest rehabilitation and the recovery of agro-pastoral productivity, ultimately aiming at reducing the flood risk and land abandonment.

期刊论文 2025-01-01 DOI: 10.3846/jeelm.2025.22951 ISSN: 1648-6897

By analyzing the last 50-60 years of climate changes in Arctic and Subarctic Yakutia, we have identified three distinct periods of climate development. The cold (1965-1987), pre-warming (1988-2004), and modern warming (2005-2023) periods are clearly identifiable. Yakutia's Arctic and Subarctic regions have experienced mean annual air temperature increases of 2.5 degrees C and 2.2 degrees C, respectively, compared to the cold period. The thawing index rose by an average of 171-214 degrees C-days, while the freezing index dropped by an average of 564-702 degrees C-days. During the pre-warming period, all three characteristics show a minor increase in warmth. Global warming intensified between 2005 and 2023, resulting in elevated permafrost temperatures and a deeper active layer. Monitoring data from the Tiksi site show that warming has been increasing at different depths since the mid-2000s. As a result, the permafrost temperature increased by 1.7 degrees C at a depth of 10 m and by 1.1 degrees C at a depth of 30 m. Soil temperature measurements at meteorological stations and observations at CALM sites both confirm the warming of the permafrost. A permafrost-climatic zoning study was conducted in Arctic and Subarctic Yakutia. Analysis identified seven regions characterized by similar responses to modern global warming. These study results form the foundation for future research on global warming's effects on permafrost and on how northern Yakutia's environment and economy adapt to the changing climate.

期刊论文 2024-12-01 DOI: 10.3390/land13122150

Understanding the effects of landscape greening pest control modes (LGPCMs) on carbon storage and soil physicochemical properties is crucial for promoting the sustainable development of urban landscape greening. Climate change and green development have led to increased landscape pest occurrences. However, the impacts of different LGPCMs on carbon storage and soil properties remain unclear. We examined six typical LGPCMs employed in Beijing, China: chemical control (HXFZ), enclosure (WH), light trapping (DGYS), biological agent application (SWYJ), natural enemy release (SFTD), and trap hanging (XGYBQ). Field surveys and laboratory experiments were conducted to analyze their effects on carbon storage and soil physicochemical properties, and their interrelationships. The main results were as follows: (1) Different LGPCMs significantly affected carbon storage in the tree and soil layers (p 0.05). Carbon storage composition across all modes followed the following order: tree layer (64.19%-93.52%) > soil layer > shrub layer > herb layer. HXFZ exhibited the highest tree layer carbon storage (95.82 t/hm(2)) but the lowest soil layer carbon storage (6.48 t/hm(2)), while DGYS performed best in the soil, herb, and shrub layers. (2) LGPCMs significantly influenced soil bulk density (SBD), clay (SC), silt particle (SSP), sand (SS), pH, organic carbon (OC), total nitrogen (TN), and heavy metal content (lead (Pb), cadmium (Cd), mercury (Hg)). WH had the highest TN (1.37 g/kg), TP (0.84 g/kg), SC (10.71%) and SSP (42.14%); HXFZ had the highest Cd (8.98 mg/kg), but lowest OC and Pb. DGYS had the highest OC and Hg, and the lowest Cd, SC, and TP. Under different LGPCMs, the heavy metal content in soil ranked as follows: Pb > Cd > Hg. (3) There were significant differences in the relationship between carbon storage and soil physicochemical properties under different LGPCMs. A significant positive correlation was observed between the soil layer carbon storage, TN, and OC, while significant negative correlations were noted between SS and SC as well as SSP. Under SFTD, the tree layer carbon storage showed a negative correlation with Cd, while under DGYS, it correlated negatively with pH and Hg. In summary, While HXFZ increased the short-term tree layer carbon storage, it reduced carbon storage in the other layers and damaged soil structure. Conversely, WH and DGYS better supported carbon sequestration and soil protection, offering more sustainable control strategies. We recommend developing integrated pest management focusing on green control methods, optimizing tree species selection, and enhancing plant and soil conservation management. These research results can provide scientific guidance for collaborative implementation of pest control and carbon sequestration in sustainable landscaping.

期刊论文 2024-12-01 DOI: 10.3390/f15122235

Between 1925 and 1930, 11 or 12 non-native mountain goats (Oreamnos americanus) were translocated from Alaska and British Columbia to the foothills of the Olympic Range. By 1970, descendants of these goats had colonized the entire range and concerns about the management of this introduced species developed as damage to alpine soil and vegetation occurred. A series of removals reduced the population from 1175 in 1983 to 389 by 1990, eventually growing to 584 in 2016. We used demographic and genetic data to parameterize a population genetics individual-based simulation model of the Olympic Range mountain goats. We calibrated the model to replicate the population trajectory for Olympic mountain goats from establishment in the 1920s through the 1983 first census. As expected, modeled population dynamics from 1928 to 1983 mimicked parameter initialization from expanding populations. However, simulated heterozygosity did not align with observations, suggesting a process not accounted for within the simulation model, such as a bottleneck or founder effect. Sensitivity analyses showed changes in annual reproductive rate, juvenile mortality, and adult female mortality influencing population trajectories, but variation in male mortality revealed no changes. Evaluating the population dynamics of the model after removals showed that approximately 80% of the total animals removed during the 1980s needed to be female in order for the observed population estimates to occur. This model has the potential to be used more widely with established or introduced mountain goat populations, as well as to provide an approach for studying other introduced species and their population dynamics.

期刊论文 2024-10-01 DOI: 10.1002/1438-390X.12179 ISSN: 1438-3896

The purpose of this study was to investigate temperature and rainfall variations and their effects on the UNESCO World Heritage Sites of Konso cultural landscape, Ethiopia, using dense merged satellite-gauge-station rainfall data (1981-2020) with a spatial resolution of 4 km-by-4 km and observed maximum and min temperature data (1987-2020), together with qualitative data gathered from cultural leaders, local administrators and religious leaders. The Climate Data tool (CDT) software version 8 was used for rainfall- and temperature-data analysis. The results showed that the north and northeastern regions of Konso had significant increases in rainfall. However, it was highly variable and erratic, resulting in extreme droughts and floods. The study confirmed that there were significant (p < 0.05) increasing trends in the number of days with heavy rainfall, very-heavy rainfall days, and annual total wet-day rainfall (R10 mm, 20 mm, and PRCPTOT). The highest daily minimum temperature, lowest and highest daily maximum-temperature number of warm days and nights, and number of cold days and nights all showed significant rising trends. The increasing trends in rainfall and temperature extremes have resulted in flooding and warming of the study area, respectively. These have led to the destruction of terraces, soil erosion, loss of life and damage of properties, loss of grasses, food insecurity, migration, loss of biodiversity, and commodification of stones. The continuous decline in farmland productivity is affecting the livelihood and traditional ceremonies of the Konso people, which are helpful for the transfer of traditional resource-management knowledge to the next generation. It is therefore necessary to implement local-scale climate change adaptation and mitigation strategies in order to safeguard the Konso cultural landscapes as a worldwide cultural asset and to bolster the resilience of smallholder farmers.

期刊论文 2024-10-01 DOI: 10.3390/su16198442
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共49条,5页